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Abstract. This paper develops seminumerical methods for computing high-order polynomial approximations of7

stable/unstable manifolds attached to long periodic orbits in discrete time dynamical systems. Our8

approach extends a standard multiple shooting scheme for periodic orbits, allowing us to compute9

invariant manifolds for periodic orbits without considering compositions of the map. This leads10

to a system of conjugacy equations characterizing the complete collection of chart maps, with one11

chart attaching a local stable/unstable manifold to each point along the periodic orbit. We develop a12

formal series solution for the system of conjugacy equations and show that the coefficients of the series13

are determined by recursively solving certain linear systems of equations. We derive the recursive14

equations for a number of example problems in dimensions two and three, with both polynomial and15

transcendental nonlinearities, and present some numerical results which illustrate the utility of the16

method. We also highlight some technical issues such as controlling the decay rate of the coefficients17

and managing truncation errors via a posteriori indicators.18
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1. Introduction. In this work we compute high-order polynomial approximations of local24

stable/unstable manifolds attached to periodic orbits in discrete time dynamical systems. Our25

approach is based on the parameterization method of [12, 13, 14], which is a general functional26

analytic framework for studying invariant manifolds. The main idea of the parameterization27

method is to look for chart maps which satisfy certain invariance equations. In the case of28

stable/unstable manifolds, this invariance equation conjugates the nonlinear dynamics near29

the fixed point to a simple polynomial model. (In fact, often we can arrange for the polyno-30

mial to be linear, see (4) and also Remark 2.6). The parameterization method recovers the31

dynamics on the invariant manifold in addition to the embedding, and moreover, the chart is32

not required to be the graph of a function—hence it is possible to follow folds in the embed-33

ding. The invariance equation also provides a convenient notion of defect, which is exploited34

for a posteriori error analysis. The main goal of the present work is to develop a parameteri-35

zation method optimized for periodic problems and to demonstrate that this method leads to36

efficient numerical implementations.37
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A period-N orbit for a map f : RM → RM is a fixed point of the map fN (f is composed38

with itself N times), and in principle one could compute invariant manifolds for period-N39

points by applying the parameterization method to the map fN . In practice, however, the40

complexity of the composition fN grows exponentially in N . The novelty of the present work41

is a composition-free parameterization method for invariant manifolds attached to periodic42

points. The idea is to extend the usual multiple shooting scheme for the periodic orbit itself43

to the invariance equation describing the manifold.44

More precisely if p1, . . . , pN ∈ RM is a periodic orbit with m ≤ M stable (or unstable)45

eigenvalues, then our method simultaneously finds the Taylor approximations of some func-46

tions P1, . . . , PN : Rm → RM in which Pj parameterizes a local stable (or unstable) manifold47

attached to pj for each 1 ≤ j ≤ N . The Taylor approximation is computed numerically48

to any desired order. Just as in a multiple shooting scheme for the periodic orbit itself, our49

system of invariance equations involves no compositions, and hence the nonlinearity determin-50

ing the stable/unstable manifold for the periodic orbit is only as complicated as the original51

nonlinearity of the model (see (15)).52

To illustrate the utility of the method, we implement it for several application problems in53

dimensions two and three. We discuss a number of computations for one- and two-dimensional54

manifolds associated with periodic orbits of periods up to 100 for a planar and spatial Hénon-55

type map. We also show that application of the method is not limited to polynomial maps by56

computing stable/unstable manifolds for some periodic orbits of the “standard map,” which57

is a system having a trigonometric nonlinearity.58

Remark 1.1 (periodic orbits and their stable/unstable manifolds in applied dynamical systems59

theory). Periodic orbits are fundamental objects of interest in the qualitative theory of dy-60

namical systems. For example, hyperbolic periodic orbits are dense in chaotic sets such as61

topological horseshoes and many strange attractors [71, 73]. Studying the set of points in62

which the stable/unstable manifolds intersect leads to bounds on topological entropy and a63

better understanding of mixing in the system [6, 32]. In these arguments, the more periodic64

orbits one includes the better the entropy bounds obtained [18, 19]. We can study the way65

that orbits approach an attractor by considering the local stable manifolds of a large enough66

collection of periodic points [77]. The attractor itself is well approximated by the unstable67

manifolds of such a collection.68

The implications of Remark 1.1 are illustrated in Figure 1, where we see the stable mani-69

folds (in red) and unstable manifolds (in blue) of a collection of points with periods ranging70

from 2 to 16 near the Hénon attractor. Points in phase space approach the attractor along71

the red curves, while the blue curves describe well the structure of the attractor. (See Remark72

1.2 below for more details.)73

The interested reader could compare the results shown in Figure 1 to similar results74

discussed in [66, 78]. In particular, see the bottom right frame of Figure 7 in the former75

reference and the bottom right frame of Figure 4 in the latter. These figures illustrate the76

results of backward iterating (11 iterates) a local parameterization of the stable manifold of77

a fixed point (period one orbit) of the Hénon map. Our Figure 1 provides a much more78

dense view of the hyperbolic structure but involves no iteration of the map; i.e., no continu-79

ation methods have been applied to the local parameterizations. This highlights the value of80
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Figure 1. Periodic orbits and their attached invariant manifolds for the Hénon map. The figure illustrates
the parameterized local unstable/stable manifolds for a collection of orbits having period between 2 and 16. The
periodic orbits are black, unstable manifolds are blue, and stable manifolds are red. Orbits approach the Hénon
attractor along the (red) stable manifolds. The unstable manifolds (blue) outline the attractor itself. The picture
makes it clear that the stable/unstable manifolds intersect many times, giving rise to heteroclinic/homoclinic
tangles. The picture is generated by evaluating a collection of polynomial parameterizations for the local sta-
ble/unstable manifolds of the periodic orbits, which does not involve any iteration of the map/continuation
algorithms. Computations for the Hénon map are discussed in more detail in section 4.3.
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the parameterization method developed in the present work but also suggests what could be81

achieved in future studies by combining our local methods with globalization techniques such82

as those of [66, 78].83

We must stress again that the idea of using multiple shooting schemes to study periodic84

dynamics is standard, having been used to great effect by a number of authors. See, for85

example, the study of [75] on computer-assisted analysis of stability regions for the quadratic86

map, the studies of [6, 32] on computer-assisted existence proofs for periodic orbits of maps87

(the former reference even studies infinite-dimensional discrete time systems), and the more88

theoretical study of [28]. The present work extends standard multiple shooting analysis to the89

problem of computing local stable/unstable manifolds.90

Remark 1.2 (illustration of results). Figures 1 and 2 illustrate some results obtained using107

the methods of the present work. Figure 1 shows parameterized local stable/unstable mani-108

folds attached to a collection of periodic orbits for the Hénon map at the classical parameter109

values. More precisely, the collection contains 1 period two, 1 period four, 2 period six, 4110

period seven, 7 period eight, 6 period nine, 10 period ten, 14 period eleven, 13 period twelve,111

23 period thirteen, 9 period fourteen, 21 period fifteen, and 14 period sixteen orbits. Each112
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Figure 2. Vortex bubble and period four subbubble in the Lomeĺı map: Top: two-dimensional unstable (blue)
and two-dimensional stable (red) manifolds attached to the fixed points of the Lomeĺı map. One-dimensional
manifolds are also shown. The two-dimensional manifolds form a “bubble” which encloses all the invariant
dynamics of the system. Bottom: dynamics inside the bubble. We locate a pair of period four saddles. The
stable/unstable manifolds of the period four orbits form “subbubbles.” We compute polynomial parameterization
of the one- and two-dimensional manifolds for the period four points using the techniques of the present work.
Again, no continuation scheme has been applied to the local parameterizations illustrated in this figure. These
computations are discussed further in section 4.5.
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manifold is approximated to Taylor order 25, and the decay rate of the Taylor coefficients113

is controlled adaptively to ensure that the last coefficients in this expansion are small. A114

posteriori error bounds for each manifold are below 10−14.115

The second figure shows results from a similar computation involving two fixed points and116

two period four orbits of the three-dimensional Lomeĺı map. This map preserves volume, and117
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hence there are no attractors. Deliberate computations of hyperbolic structures, such as the118

ones developed in the present work, facilitate better understanding of the orbit structure of119

such systems. The manifolds are approximated to Taylor order 25, and the a posteriori error120

is small. More details for these and other computations are found in section 4.121

The curves and surfaces shown in the figures are obtained by evaluating polynomial ap-122

proximations of the local invariant manifolds. The polynomials are computed using the meth-123

ods developed in section 3 and implemented as discussed in section 4. The computations124

illustrated in the figures, and discussed throughout the present work, make no use of numeri-125

cal continuation or globalization methods for the local manifolds. This is not to say that local126

parameterizations should never be globalized. Rather, the present work focuses on results127

which can be achieved priori to continuation/globalization. We leave to a future study the128

task of continuing our results.129

We make an effort to work out quite explicitly the derivation of the recursion relations130

defining the Taylor series coefficients of our polynomial approximations, as it is hoped that131

the present work constitutes a stand-alone exposition in this sense. Nevertheless these formal132

series arguments can be automated using software packages such as those discussed in [45, 59].133

Development of general-purpose software, however, is beyond the scope of the present study.134

Remark 1.3 (a posteriori analysis and validated numerics). As already mentioned above,135

one of the strengths of the parameterization method is that it provides a notion of a poste-136

riori error (or defect). In other words, since the desired parameterizations solve an operator137

equation, we can always plug our approximate solution into the equation, and asses (via some138

convenient choice of norm) how close the result is to zero. In the present work we use the a139

posteriori error as an indicator of the quality of our computations.140

Of course small defects do not imply small truncation errors, and it is desirable to have a141

more refined a posteriori analysis. Indeed, via a blend of pen- and- paper analysis with delib-142

erate control of round-off errors, it is possible to obtain mathematically rigorous computer-143

assisted error bounds associated with the polynomial approximations. Several works in this144

vein, for both finite- and infinite-dimensional dynamical systems, are [10, 43, 44, 63, 65, 76].145

Developing validated numerics for the parameterization method of the present work is the146

topic of an upcoming study by the authors [34].147

2. Background. This section reviews some basic notions from the qualitative theory148

of dynamical systems and provides a brief review of the parameterization method for sta-149

ble/unstable manifolds of fixed points. The reader familiar with the parameterization method150

may want to skip ahead to section 3 and refer back to this section only as needed. The reader151

wishing to review the parameterization method may want to skim section 2.2.152

Let x = (x1, . . . , xM ) ∈ RM denote a point in Euclidean M -space, and endow RM with153

the norm154

‖x‖ := max
1≤j≤M

|xj |,155

156

where | · | denotes the usual absolute value. Let157

BM
r (x) :=

{
y ∈ RM : ‖x− y‖ < r

}
158
159
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denote the ball (actually, cube) of radius r about x in this norm. If E ⊂ RM is compact and160

x ∈ RM , define161

d(x,E) := inf
y∈E
‖x− y‖,162

163

the distance from x to E.164

When discussing power series, we employ the following notation. If P : Rm → RM is165

analytic at p0 ∈ RM , then P has a power series representation166

P (θ) =
∞∑
|α|=0

pαθ
α =

∞∑
α1=0

· · ·
∞∑

αm=0

pα1,...,αmθ
α1
1 · · · θ

αm
m ,167

168

where α = (α1, . . . , αm) ∈ Nm is an m-dimensional multi-index,169

|α| := α1 + · · ·+ αm,170
171

pα ∈ RM for each α, and172

θα := θα1
1 · · · θ

αm
m .173

174

2.1. Stable/unstable manifold for discrete time dynamical systems. Consider a diffeo-175

morphism f : RM → RM with fixed point p. (All of the examples considered in the present176

work are in fact analytic maps with analytic inverse.) Suppose that p is a hyperbolic fixed177

point of f , i.e., that no eigenvalues of Df(p) lie on the unit circle. Then there are ms,mu ∈ N178

with ms + mu = M , so that Df(p) has ms stable eigenvalues and mu unstable eigenvalues179

(counted with multiplicity). We then label the eigenvalues as λs1, . . . , λ
s
ms , λ

u
1 , . . . , λ

u
mu with180

0 < |λsms | ≤ · · · |λ
s
1| < 1 < |λu1 | ≤ · · · |λumu |.181

182

Let ξu1 , . . . , ξ
u
mu , ξ

s
1, . . . , ξ

s
ms ∈ RM denote a choice of linearly independent (possibly general-183

ized) eigenvectors.184

Let U ⊂ RM be an open neighborhood of p. The local stable set of p relative to U is185

W s
loc(p, U) :=

{
x ∈ RM : fn(x) ∈ U for all n ≥ 0

}
.186

187

By the stable manifold theorem (see, for example, [67] for discussion and proof) there exists188

an open neighborhood V ⊂ RM of p so that189

(i) the local stable set W s
loc(p, V ) is a smooth, embedded, ms-dimensional disk. If f is190

analytic then the embedding is analytic.191

(ii) W s
loc(p, V ) is tangent to the stable eigenspace of Df(p) at p; i.e., the vectors ξs1, . . . , ξ

s
ms192

span the tangent space of W s
loc(p, V ) at p.193

(iii) if x ∈W s
loc(p, V ), then194

lim
n→∞

fn(x) = p.195

196
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We refer to any local stable set W s
loc(p, V ) satisfying (i)–(iii) above as a local stable manifold197

for p. We say that W s
loc(p) is a local stable manifold at p if W s

loc(p) = W s
loc(p, V ) satisfies (i)–198

(iii) above with V some open neighborhood of p. Note that if W s
loc(p, V ) has (i)–(iii) above199

and BM
r (p) ⊂ V , then W s

loc(p,B
M
r (p)) has (i)–(iii) as well; i.e., local stable manifolds are not200

unique.201

Since f is invertible given any local stable manifold W s
loc(p, V ), we can define the set202

W s(p) =
∞⋃
n=0

f−n [W s
loc(p)] =

{
x ∈ RM | fn(x)→ p as n→∞

}
.(1)203

204

The resulting set W s(p) is a globally invariant manifold (which may not be an embedded205

disk). We refer to W s(p) as the stable manifold of p, as W s(p) does not depend on the choice206

of local stable manifold.207

With these considerations applied to f−1 at p, let us define local unstable manifolds, which208

we denote by W u
loc(p) with analogous definition. (We remark that if p is a hyperbolic fixed209

point of a smooth map f , then f−1 exists at least locally, and the assumption above that210

f is a diffeomorphism on RM is not actually needed to define the local unstable manifold.211

However, this fact is not used in the present work.) The set212

W u(p) =
∞⋃
n=0

fn [W u
loc(p)] =

{
x ∈ RM | f−n(x)→ p as n→∞

}
213

214

is a unique globally defined invariant manifold, which we refer to as the unstable manifold215

of p.216

Remark 2.1 (linear approximation of the local stable/unstable manifolds). Even when the217

map f : RM → RM is explicitly known, closed form expressions for the local stable/unstable218

manifolds W s,u
loc (p) are rarely available. In applications, we are interested in approximating219

these manifolds, and part (ii) of the stable manifold theorem provides a first-order approxi-220

mation. More precisely, suppose that the vectors ξs1, . . . , ξ
s
ms are all scaled to have length one,221

and define the M ×ms matrix as222

[ξs1| · · · |ξsms ] = As;223
224

i.e., As is the matrix with columns given by the (generalized) eigenvectors. Then the param-225

eterization P 1 : Rms → RM given by226

P 1(θ) := p+Asθ, θ := (θ1, . . . , θms)227
228

approximates W s
loc(p) to first order. More precisely, let229

Bms
δ (0) := {θ ∈ Rms : ‖θ‖ < δ}.230

231

The restriction of P 1 to Bms
δ (0) is a quadratically good approximation of the stable manifold232

in the sense that233

sup
θ∈Bmsδ (0)

dist
(
P 1(θ),W s

loc(p)
)
≤ C‖θ‖2,234

235
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though in practice more work is required to obtain estimates on the magnitude of C. Neverthe-236

less, combining the observation above with (1) leads to various algorithms for approximating237

W s(p). This point is discussed in more detail in section 2.4. Similar considerations lead to a238

linear approximation of the local unstable manifold by the unstable (generalized) eigenvectors.239

Remark 2.2. To define the linear approximation P 1 in Remark 2.1, it is necessary to fix240

a choice of scalings for the (generalized) eigenvectors, and of course this choice is not unique.241

In general the size of the neighborhood on which the linear approximation gives quadratically242

good approximation depends on the choice of scalings. For example, in Remark 2.1 we would243

have obtained exactly the same results by taking the (generalized) eigenvectors to have scalings244

‖ξsj‖ = δ, 1 ≤ j ≤ ms,245
246

and restricting the domain of P 1 to the unit ball Bms
1 (0).247

This nonuniqueness is inherent in many schemes for approximating the stable manifold248

and plays an important role in what follows. The issue is not surprising, as nonuniqueness249

appears already in the definition of the local stable manifold (i.e., there is one local stable250

manifold for every appropriate choice of neighborhood of the fixed point). In the case of the251

linear approximation, the choice of scalings is more or less arbitrary, and we might as well252

take unit vectors as in Remark 2.1. However, when we study power series methods, we will253

see that the freedom to choose the (generalized) eigenvector scalings provides control over the254

decay rates of the Taylor coefficients. It turns out that manipulating these decay rates is then255

useful for stabilizing numerical computations.256

2.2. Review of the parameterization method. Suppose that f , p, andms are as in section257

2.1. Throughout the remainder of this section we assume that m = ms > 0 and let λ1, . . . , λm,258

and ξ1, . . . , ξm denote, respectively, the stable eigenvalues and an associated choice of linearly259

independent (generalized) eigenvectors. Again, by the stable manifold theorem there is a260

local stable manifold W s
loc(p), which is geometrically a smooth embedded disk tangent to261

the stable (generalized) eigenspace at p ∈ RM . We are interested in smooth injective maps262

P : Bm
1 (0)→ RM having263

P (0) = p and
∂

∂θj
P (θ) = ξj for each 1 ≤ j ≤ m,(2)264

265

and266

P [B1(0)m] ⊂W s(p),(3)267
268

i.e., charts for the local stable manifold. Clearly if P is one such chart, then any reparameter-269

ization of P is again a chart. Thus, the parameterization P just discussed cannot be unique,270

and we are free to impose additional constraints.271

The idea of the parameterization method [12, 13, 14] is to look for a smooth function P :275

Bm
1 (0) → RM satisfying not only the first-order constraints of (2), but also the conjugacy276

equation277

f [P (θ1, . . . , θm)] = P (λ1θ1, . . . , λmθm)(4)278
279

for all θ ∈ Bm
1 (0). Several useful results for the parameterization method are summarized280

below. First we need the following definition.281
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✓

P (✓)

P

✓

p

P

f

RM RM

Rm Rm

f [P (✓1, . . . , ✓m)] = P (�1✓1, . . . , �m✓m)

⇤✓

P (⇤✓)F (P (✓)) =

⇤

Figure 3. Cartoon illustrating the conjugacy relation of (4). Here Λ is the diagonal matrix of eigenvalues,
and f is the nonlinear map. The goal of the parameterization method is to find a chart P which makes the
diagram commute.

272

273

274

Definition 2.3 (nonresonant eigenvalues). We say that the stable eigenvalues λ1, . . . , λm282

are nonresonant if283

λα1
1 · · · · · λ

αm
m 6= λj with 1 ≤ j ≤ m284

285

for all α = (α1, . . . , αm) ∈ Nm with |α| = α1 + · · ·+ αm ≥ 2, that is, if no product of positive286

powers of the stable eigenvalues is again a stable eigenvalue.287

First we note that, despite first appearances, Definition 2.3 imposes only a finite number288

of constraints on the eigenvalues. To see this, let289

µ∗ = min
1≤j≤m

|λj | and µ∗ = max
1≤j≤m

|λj |290

291

denote, respectively, the smallest and largest moduli of the stable eigenvalues, and note that292

for any multi-index α ∈ Nm, we have the bound293

|λα1
1 · · · · · λ

αm
m | ≤ (µ∗)α1 · · · · · (µ∗)αm294

= (µ∗)|α|.295

Then a resonance is impossible for any α ∈ Nm with296

(µ∗)
|α| > µ∗,297

298

and we conclude that a necessary condition for a resonance is that299

2 ≤ |α| ≤ ln(µ∗)

ln(µ∗)
.(5)300

301

Then it is enough to check the resonance conditions only for α as in (5), emphasizing that302

ruling out a resonance is a finite check.303
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Definition 2.4 (eigenvector scalings). Suppose that304

‖ξ1‖ = s1, . . . , ‖ξm‖ = sm.305
306

We refer to the collection of numbers s1, . . . , sm > 0 as the scalings of the (generalized)307

eigenvectors and write308

s = max
1≤j≤m

(sj).309

310

The following theorem summarizes a number of basic results. Note that from this point311

forward we impose the additional assumption that the differential is diagonalizable (see, how-312

ever, Remark 2.6 below). Proofs of these results can be extracted from the much more general313

discussion in [12].314

Lemma 2.5. Let f : RM → RM be an invertible map, and let p ∈ RM be a fixed point of f .315

Suppose that f is differentiable in a neighborhood of p, and assume that the differential Df(p)316

is a diagonalizable matrix. Let λ1, . . . , λm ∈ C denote the stable eigenvalues of Df(p), and let317

ξ1, . . . , ξm ∈ RM denote an associated choice of linearly independent eigenvectors.318

• If P : Bm
1 (0) → RM is a smooth solution of (4) satisfying the first-order constraints319

given by (2), then P is a chart map for a local stable manifold of p.320

• If λ1, . . . , λm are nonresonant, in the sense of Definition 2.3, then there exists an ε > 0321

so that for every choice of eigenvectors with scalings s1, . . . , sm as in Definition 2.4322

having s1, . . . , sm ≤ ε, (4) has a solution P : Bm
1 (0)→ RM subject to the constraints of323

(2). The solution P is unique up to the choice of the eigenvectors.324

• If f ∈ Ck(RM ), then P ∈ Ck(Bm
1 (0),RM ) as well. k ∈ {∞, ω} are included in this325

claim.326

Now assume that f is analytic near p. Then Lemma 2.5 says that for some choice of eigen-327

vector scalings a parameterization P solving (4) exists, and that the function P is analytic.328

Then it is natural to look for a power series solution329

P (θ) =
∞∑
|α|=0

pαθ
α.330

331

P satisfies the first-order constraints of (2) if we require that332

p0 = p333
334

and335

pej = ξj for 1 ≤ j ≤ ms,336
337

where 0 = (0, . . . , 0) ∈ Nms is the ms-dimensional zeroth-order multi-index and ej = (0, . . . ,338

1, . . . , 0) are the standard basis vectors for Nms .339

To work out the higher-order coefficients pα with |α| ≥ 2, one expands (4) in terms of this340

power series, matches like powers of θ, and solves the resulting recurrence equations order by341

order. This computation results in a homological equation of the form342 [
Df(p)− λα1

1 · · ·λ
αms
ms Id

]
pα = Sα,(6)343

344

345
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where Sα is a function only of the coefficients pβ with |β| < |α|, and the form of Sα is346

completely determined by the nonlinearity of f . Observe that (6) provides a linear equation347

for the Taylor coefficients of the unknown parameterization.348

Observe that as long as the eigenvalues are nonresonant in the sense of Definition 2.3,349

the homological equation (6) is uniquely solvable, and the parameterization P is formally well350

defined. Once Sα is known explicitly, numerical algorithms for computing the parameterization351

P are obtained by solving (6) to the desired order.352

The derivation of the homological equations are worked out in detail (and in greater353

generality) in section 3.1 of [12]. Nevertheless for specific examples it is usually desirable (even354

necessary) to derive the homological equations from scratch in order to obtain the explicit355

dependence of Sα on the lower-order terms. In section 2.3 we illustrate such a derivation for356

the composition of the Hénon map with itself. This computation facilitates comparison of the357

multiple shooting scheme of the present work with a naive application of the parameterization358

to the composition map as discussed in section 4.2. Other similar computations are found in359

[30], in sections 2.2 and 2.3 of [62], and in section 3.1 of [15].360

Remark 2.6.361

• These developments apply to the unstable manifold with only the obvious changes; i.e.,362

one considers exactly the same conjugacy given in (4) and is led to exactly the same363

homological equation as given by (6), with the only change being that stable eigenval-364

ues/eigenvectors must be replaced by the unstable eigenvalues/eigenvectors. General365

treatment of the parameterization method is found in the work of [12, 13, 14]. Several366

papers focusing on numerical aspects of the parameterization method for stable/unstable367

manifolds of fixed points for maps are [3, 61, 62, 64, 65]. Many additional extensions368

and applications of these techniques, as well as a thorough discussion of the literature,369

are found in the recent book of [39].370

• Of course in a particular application it is always possible that a resonance will occur.371

Indeed, for problems with special symmetries, or problems in which we vary a parame-372

ter, resonances are sometimes unavoidable. When there is a resonance it is not possible373

to analytically conjugate to the linear dynamics, even though the map f is analytic.374

Yet this is not the end of the story, as the method can still succeed after modifying the375

conjugacy. In fact, one conjugates to a polynomial rather than a linear map, choosing376

the polynomial to “kill off” the resonant terms. Similar remarks hold in the nondiago-377

nalizable case, i.e., when we have repeated eigenvalues/generalized eigenvectors. These378

degenerate cases are worked out in full detail in [12]. The end result is that the parame-379

terization method always applies, once resonances are accounted for. See also the work380

of [76] for numerical implementation, and a posteriori analysis of the resonant cases.381

More general nonresonance conditions are studied in [20].382

2.3. A first worked out example: Homological equations for a fixed point of the383

Henon-2 map. The Henon map f : R2 → R2 is the quadratic polynomial diffeomorphism of384

the plane given by385

f(x, y) =

(
1 + y − ax2

bx

)
,(7)386

387
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with a, b ∈ R. The map is invertible with quadratic inverse. For a much more complete388

discussion see [41].389

In this section we consider the mapping g : R2 → R2 defined by390

g(x, y) := (f ◦ f)(x, y) =

(
1− a+ bx− 2ay − ay2 + 2a2x2 + 2a2yx2 − a3x4

b+ by − abx2
)
,(8)391

392

i.e., one composition of the Henon map with itself. Our interest in this map comes from the393

fact that if p0 ∈ R2 is fixed for g but not for f , then p0 is period two for the Hénon map.394

Moreover the stable/unstable manifolds of the fixed point p0 for g are the stable/unstable395

manifolds for the period two orbit in the Hénon map.396

In this section we derive, as an exercise, the homological equations associated with g.397

This exercise serves two purposes; first, to review the classical use of the parameterization398

as a tool for studying invariant manifolds attached to fixed points; and second, to use the399

homological equations derived here in section 4.2 to make some comparisons between a naive400

application of the parameterization method to the composition map and the multiple shooting401

parameterization method of the present work.402

Let Dg(p0) denote the Jacobian differential of g at p0, and suppose that λ ∈ R is a stable403

(or unstable) eigenvalue of Dg(p0). Assume that Dg(p0) is diagonalizable, and let ξ ∈ R2
404

denote an associated eigenvector. We seek405

P (θ) =
∞∑
n=0

pnθ
n =

∞∑
n=0

(
un
vn

)
θn,406

407

which satisfies the invariance (4). More precisely, we require that408 (
u0
v0

)
= p0 and

(
u1
v1

)
= ξ,409

410

and that P is a solution of411

g(P (θ)) = P (λθ).(9)412
413

Expanding both sides of (9) as power series using Cauchy products and matching like414

powers of θ leads to415 
bun − 2avn − a

n∑
k=0

vn−kvk + 2a

n∑
k=0

un−kuk + 2a2(v ∗ u ∗ u)n − a3(u ∗ u ∗ u ∗ u)n

bvn − ab
n∑
k=0

un−kuk

416

417

418

= λn
(
un
vn

)
(10)419

420

421
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for n ≥ 2, and where (for the sake of brevity) the higher-order Cauchy products are written as422

(v ∗ u ∗ u)n :=
n∑
k=0

k∑
j=0

vn−kuk−juj423

424

and425

(u ∗ u ∗ u ∗ u)n :=
n∑
k=0

k∑
j=0

j∑
l=0

un−kuk−juj−lul.426

427

To obtain recurrence relations, we isolate terms of order n, many of which are locked up428

in the Cauchy products. Thus,429

n∑
k=0

vn−kvk = 2v0vn +

n−1∑
k=1

vn−kvk430

431

and432

n∑
k=0

un−kuk = 2u0vn +
n−1∑
k=1

un−kuk.433

434

Similarly,435

(v ∗ u ∗ u)n = 2v0u0un + u20vn + (v ∗ u ∗ u)
∧

n436
437

and438

(u ∗ u ∗ u ∗ u)n = 4u30un + (u ∗ u ∗ u ∗ u)
∧

n,439
440

where441

(v ∗ u ∗ u)
∧

n :=
n∑
k=0

k∑
j=0

δ̂nkkj vn−kuk−juj ,442

(u ∗ u ∗ u ∗ u)
∧

n :=

n∑
k=0

k∑
j=0

j∑
l=0

δ̂nkjkjl un−kuk−juj−lul,443

δ̂nkkj :=


0 if k = n and j = k,

0 if k = n and j = 0,

0 if k = 0 and j = 0,

1 otherwise

444

445

and446

δ̂nkjkjl :=



0 if k = n, j = n, and l = n,

0 if k = n, j = n, and l = 0,

0 if k = n, j = 0, and l = 0,

0 if k = 0, j = 0, and l = 0,

1 otherwise.

447

448

449
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The point is that these “hatted” products are iterated Cauchy products with terms of order450

n-removed.451

We now isolate the terms of order n on the left-hand side and obtain from (10) that452

(
bun − 2avn − 2av0vn + 4a2u0un + 4a2v0u0un + 2a2u20vn − 4a3u30un

bvn − 2abu0un

)
− λn

(
un
vn

)
= sn,

(11)

453

454

where the sum455

sn :=


a
n−1∑
k=1

vn−kvk − 2a2
n−1∑
k=1

un−kuk − 2a2(v ∗ u ∗ u)
∧

n + a3(u ∗ u ∗ u ∗ u)
∧

n

ab
n−1∑
k=1

un−kuk

(12)456

457

has no dependence on un, vn. Moreover, noting that458

Dg(x, y) =

(
b+ 4a2x+ 4a2yx− 4a3x3 −2a− 2ay + 2a2x2

−2abx b

)
,459

460

we see that the left-hand side of (11) becomes461 [(
b+ 4a2u0 + 4a2v0u0 − 4a3u30 −2a− 2av0 + 2a2u20

−2abu0 b

)
− λn

(
1 0
0 1

)](
un
vn

)
462

463

= [Dg(u0, v0)− λnId] pn,464
465

confirming that the homological have the form claimed in (6) (as they must). More impor-466

tantly, the calculation provides the explicit form of sn, which was a priori unknown. Solving467

the homological equations468

[Dg(u0, v0)− λnId] pn = sn469
470

for 2 ≤ n ≤ K, with sn as defined in (12), leads to the Kth-order polynomial approximation471

PK(θ) =

K∑
n=0

pnθ
n

472

473

of the local stable/unstable manifold attached to p0.474

2.4. Related literature: Numerical computation of local stable/unstable manifolds and475

growing or continuing the global manifold. Two issues have to be considered in any discus-476

sion of computational methods for stable/unstable manifolds. First is the local computation477

near the fixed/periodic orbit, and second is the numerical continuation of the local patch.478

These two steps have their own distinct flavors, and a growing body of literature is devoted479

to each.480
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The simplest approximation of the local stable/unstable manifold is the linear approxima-481

tion by the eigenspace already mentioned in Remark 2.2. The linear approximation is widely482

used and is sufficient for many applications. The idea of studying an invariance equation483

to obtain the jets of an invariant object appears as early as the work of Poincaré (see, for484

example, the historical discussion in Appendix A of [14]), and numerical methods based on485

this idea go back to the work of [30]. See also the lecture notes of [70]. Since then, many486

authors have expanded this research, and a small (and incomplete) sample of works which487

focus on high-order numerical approximation of stable/unstable manifolds attached to fixed488

points of maps includes [3, 9, 43, 62]. These works discuss many additional references. The489

reader interested in these techniques can consult the recent book of [39] for an overview of490

the literature, many generalizations to quasi-periodic solutions and their invariant sets, and491

applications to ODEs.492

Given a good local approximation of the stable/unstable manifold, one uses continuation493

techniques such as those discussed in [48, 49] to increase or grow the manifold. For the case of494

differential equations, we also mention the method of geodesic level sets [37, 50, 51], the method495

of boundary value problem continuation of trajectories [52], the method of fat trajectories [40],496

the PDE formulation of [37], as well as the set oriented methods of [21]. The methods of [21]497

apply to maps as well. In many applications the continuation/globalization methods just498

mentioned are seeded with the linear approximation of the stable/unstable manifold by the499

associated stable/unstable eigenspace. Yet none of the methods just mentioned depends on500

this; that is, they could instead be seeded with larger local patches of manifold given by some501

high-order approximation, perhaps providing improved results.502

The two studies [35, 79] explore the possibility of building adaptive continuation methods503

seeded with high-order parameterizations of the local stable/unstable manifolds. In these504

works the local manifold is computed to any desired order using the parameterization method505

(much as in the present work), and then a larger portion of the manifold is grown by adaptively506

iterating a mesh composed of Bézier triangle patches. These works illustrate nicely what507

can be achieved by combining the parameterization method with sophisticated continuation508

techniques.509

In applications computing stable/unstable manifolds is a first step toward understanding510

global dynamics of nonlinear systems. We refer, for example, to the numerical studies of511

global bifurcations and preturbulence for the Lorenz system [1, 27], global consequences of512

bifurcations at infinity such as α-flips [17], and global invariant manifolds near a Shilnikov513

bifurcation in a laser model [2]. The interactions between Julia sets and stable/unstable514

manifolds are studied numerically in [42]. Dynamical transport and design of low energy515

transport in celestial mechanics, as discussed in [22, 33, 33, 47, 60, 72], is an outstanding516

example of the use of stable/unstable manifolds in applications. See also the work of [4, 5,517

23, 24] on weak stability boundaries and geometric instability in Hamiltonian systems, as well518

the work of [68, 69] on spatial structure of galaxies.519

Stable/unstable manifolds commonly appear in the geometric theory of dynamical systems520

as separatrices or transport barriers. We refer, for example, to the work of [55, 56, 57] on521

generalizations of Melnikov theory based on the study of stable/unstable manifolds and their522

intersections. Numerical methods for computing connecting orbits are often based on the idea523

of solving a boundary value problem for orbits beginning on an unstable and terminating on524
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a stable manifold. See, for example, the general numerical methods developed in [8, 26, 31]525

and also the lecture notes [25]. We also refer the interested reader to the works of [3, 62, 64]526

for discussion of numerical methods which combine high-order parameterization of the local527

stable/unstable manifolds with shooting methods for solving discrete time boundary value528

problems in order to compute connecting orbits for maps.529

Of course, the references mentioned in this section barely scratch the surface of the relevant530

literature. The discussion above is only meant to provide some motivation and context for531

the present work within the existing literature.532

3. A parameterization method for periodic orbits. Let f : RM → RM be a diffeomor-533

phism, and recall that fN denotes the composition of the map f with itself N times (let f0534

be the identity map). A period N point for the map f is a p ∈ RM , so that535

fN (p) = p;536
537

i.e., p is a fixed point of the map fN . We say that the point p is a hyperbolic period N point538

for f if p is a hyperbolic fixed point of fN , i.e., if the matrix DfN (p) has no eigenvalues on539

the unit circle. We say that p has least period N if540

f j(p) 6= fk(p) for 1 ≤ j 6= k ≤ N.541
542

In both numerical and theoretical considerations of period N points it is often useful to543

consider the following “multiple shooting” scheme. We introduce the variables p = p1 and544

f(pj) = pj+1 for j ≥ 1 and look for solutions of the following system of equations:545

f(p1) = p2546

f(p2) = p3547

...548

f(pN ) = p1.549

We refer to p1, . . . , pN as a periodic orbit for f . Motivated by this system of equations, we550

define also the mapping F : RM×N → RM×N by551

F (p1, . . . , pN ) =


f(pN )
f(p1)

...
f(pN−1)

(13)552

553

and note that if (p1, . . . , pN ) ∈ RM×N is a fixed point of F , then any of the points pj ,554

1 ≤ j ≤ N , is a period N point for f . Moreover if pi 6= pj for i 6= j, then each of the pj ,555

1 ≤ j ≤ N , has least period N .556

Note that the differential of F is given by557

DF (p1, . . . , pN ) =


0 0 . . . 0 Df(pN )

Df(p1) 0 . . . 0 0
0 Df(p2) . . . 0 0
...

...
. . .

...
...

0 0 . . . Df(pN−1) 0

 .558

559
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Moreover suppose that p = (p1, . . . , pN ) ∈ RM×N is a fixed point of F , and let λ ∈ C and560

ξ = (ξ1, . . . , ξN ) ∈ RM×N . Then we have the following proposition.561

Proposition 3.1. Suppose that p ∈ RMN is a fixed point of F . Then λ, ξ is an eigenvalue/562

eigenvector pair for DF (p) if and only if for each 1 ≤ j ≤ N , N
√
λ, ξj is an eigenvalue/563

eigenvector pair for DfN (pj).564

Proof. Note that λ 6= 0, as f is a diffeomorphism. Moreover each of the matrices Df(pj)565

is invertible. Starting with DF (p)ξ = λξ and rewriting it as the system566

Df(pN )ξN = λξ1567

Df(p1)ξ1 = λξ2568

...569

Df(pN−1)ξN−1 = λξN−1,570

we get that571

Df(pj+1)Df(pj)ξj = λ2ξj+2572

...573

Df(pj−1) · · ·Df(p1)Df(pN ) · · ·Df(pj)ξj = λNξj ,574

i.e., DfN (pj)ξj = λNξj , by the chain rule. Reversing the computation gives the reverse575

implication.576

The proposition says that we recover the stability of each of the period N points pj ,577

1 ≤ j ≤ N , by computing the stability of the fixed point p. Note that the proof also recovers578

the classic fact that if p1, . . . , pN is a periodic orbit of least period N , then each of the periodic579

points has the same eigenvalues. Moreover the periodic orbit is hyperbolic if and only if p is580

a hyperbolic fixed point.581

3.1. Composition-free invariance equations. Continuing the notation established in sec-582

tion 3, let p1, . . . , pN ∈ RM be a hyperbolic periodic orbit of the smooth map f : RM → RM ,583

and let λ̃1, . . . , λ̃m denote the stable eigenvalues of any of the matrices DfN (pj), 1 ≤ j ≤ N (as584

each of these matrices has the same eigenvalues). Assume that each of the matrices DfN (pj),585

1 ≤ j ≤ N , is diagonalizable, and let ξ̃
(j)
1 , . . . , ξ̃

(j)
m denote a linearly independent choice of586

eigenvectors. Motivated by the above considerations for periodic points, we develop a “mul-587

tiple shooting” approach to the parameterization of stable/unstable manifolds for a period N588

point. Let589

λj :=
(
λ̃j

) 1
N

590
591

for each 1 ≤ j ≤ m.592

We look for smooth functions P (j) : Bm
1 (0) → RM , 1 ≤ j ≤ N , satisfying the first-order593

constraints594

P (j)(0) = pj and
∂

∂θk
P (j)(0) = ξ

(j)
k(14)595

596
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for 1 ≤ j ≤ N and 1 ≤ k ≤ m, and solve the system of invariance equations597

f
(
P (1) (θ1, . . . , θm)

)
=P (2) (λ1θ1, . . . , λmθm)

f
(
P (2) (θ1, . . . , θm)

)
=P (3) (λ1θ1, . . . , λmθm)
...

f
(
P (N−1) (θ1, . . . , θm)

)
=P (N) (λ1θ1, . . . , λmθm)

f
(
P (N) (θ1, . . . , θm)

)
=P (1) (λ1θ1, . . . , λmθm)

(15)598

599

for θ1, . . . , θm ∈ Bm
1 (0).600

The following discussion explains our interest in this system. Suppose that (P (1), . . . ,601

P (N)(θ)) is a solution of the system of (15). Then602

f [P (1)(θ1, . . . , θm)] = P (2)(λ1θ1, . . . , λmθm),603
604

so that605

f
(
f [P (1)(θ1, . . . , θm)]

)
= f [P (2)(λ1θ1, . . . , λmθm)] = P (3)(λ21θ1, . . . , λ

2
mθm)606

607

or608

f2[P (1)(θ1, . . . , θm)] = P (3)(λ21θ1, . . . , λ
2
mθm).609

610

Proceeding in this way leads to611

fk[P (1)(θ1, . . . , θm)] = P (k+1)(λk1θ1, . . . , λ
k
mθm)612

613

for 1 ≤ k ≤ N − 1, and finally614

fN [P (1)(θ1, . . . , θm)] = P (1)(λN1 θ1, . . . , λ
N
mθm),615

616

which is617

fN [P (1)(θ1, . . . , θm)] = P (1)(λ̃1θ1, . . . , λ̃mθm),618
619

so that P (1) satisfies the parameterization conjugacy equation for the composition map fN .620

Repeating this computation for each P (k) with 2 ≤ k ≤ N gives the following.621

Claim 3.2. If P (θ) := (P 1(θ1, . . . , θm), . . . , P (N)(θ1, . . . , θm)) solves the system of equa-622

tions given by (15), then P (k) parameterizes the local stable manifold at pk for each 1 ≤ k ≤ N .623

To solve the system of invariance equations, we consider the case when f is analytic and624

look for formal series solutions625

P (k)(θ1, . . . , θm) =

∞∑
|α|=0

p(k)α θα626

627

or628

P (θ) =

∞∑
|α|=0

pαθ
α, where pα =

 p
(1)
α
...

p
(N)
α

 .629

630

631
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We will see that if F : RMN → RMN is the map defined in (13), and if p = (p1, . . . , p
N ) ∈ RMN

632

denotes the periodic orbit, then the coefficients of P solve homological equations of the form633

[DF (p)− λα1
1 · · ·λ

αm
m IdRMN ] pα = Sα.(16)634

635

Here Sα is a nonlinear function of the coefficients {pβ} with |β| < |α|, and the form of the636

nonlinearity of Sα depends only on the nonlinearity of f (rather than the nonlinearity fN ).637

Deriving the explicit form of Sα is a problem-dependent question best illustrated in specific638

examples.639

Note that640

λα1
1 · · ·λ

αm
m = λk641

642

for some 1 ≤ k ≤ N and some fixed multi-index (α1, . . . , αm) ∈ Zm if and only if643

λ̃α1
1 · · · λ̃

αm
m = λ̃k,644

645

with the same data; i.e., the homological equations (16) have a unique solution pα for each646

α ∈ Nm, |α| ≥ 2, if and only if the eigenvalues of DfN (pk) are nonresonant. Then the647

“multiple-shooting” version of the parameterization method is applicable if and only if the648

standard version applies to the fixed point of the composition map.649

Claim 3.3 (real analytic parameterizations). By appropriately choosing the eigenvectors, we650

can always arrange for the image of the parameterizations to be real.651

Starting with a real eigenvalue and eigenvector of DfN (pj), call it u
(j)
1 , it is easy to see652

from the recursive equation (DfN (pj) − λNnI)u
(j)
α = s

(j)
α that u

(j)
α is real for all α. Now we653

rewrite (DF (p∗)− λnI)uα = Sα as a system using block multiplication, i.e.,654

Df(pN )u(N)
α − λαu(1)α = S(1)

α655
656

and657

Df(pj)u
(j)
α − λαu(j+1)

α = S(j+1)
α658

659

for j = 1, . . . , N − 1. This system leads to660

(Df(pj−1) · · ·Df(p1)Df(pN ) · · ·Df(pj)− λNαI)u(j)α = Σ(j)
α ,661

662

that is663

(DfN (pj)− λNαI)u(j)α = Σ(j)
α ,664

665

where666

Σ(j)
α = (Df(pj) · · ·Df(p1)Df(pN ) · · ·Df(pj+1))S

(j)
α667

+λα(Df(pj) · · ·Df(p1)Df(pN ) · · ·Df(pj+2))S
(j+1)
α668

+ · · ·669

+λ(N−1)αS(j−1)
α .670
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Summarizing, we have that671

Σ(j)
α = DfN (pj+1)S

(j)
α + λαDfN−1(pj+2)S

(j+1)
α + · · ·+ λ(N−1)αS(j−1)

α [∗].672
673

Now (DfN (pj)− λNαI) is a real matrix, and hence it is enough to ensure that Σ
(j)
α is real.674

For Σ
(j)
α , a finite sum of convolution terms the above suggests to multiply u

(j−1)
1 by λ675

· · · and u
(j+1)
1 by λN−1 . In practice, we multiply u

(j−1)
1 by a primitive N root of unity ρ676

· · · and multiply u
(j+1)
1 by ρN−1. Using automatic differentiation, the argument extends to677

non-polynomial nonlinearities as well.678

For simplicity of the argument pick u
(N)
1 real; then using induction on [*] we show that679

u
(j)
α λN−j is real for all α and j, and it also shows that multiplying u

(j)
1 by λ and recomputing680

u
(j)
α to evaluate P̂ (j)(θ) is equivalent to computing P (j)(λθ).681

Claim 3.4 (nonuniqueness and scaling the eigenvectors). By appropriately choosing the scal-682

ings of the eigenvectors, we can arrange that for Taylor series coefficients of the parameteri-683

zations to have whatever exponential decay rate we like.684

To see this, note that Lemma 2.5 tells us that solutions of (4) are unique up to the choice685

of the scalings of the eigenvectors at the fixed point. The same follows for the system given686

by (15), precisely because solutions of the system of equations (15) are equivalent to solutions687

of (4) for the composition map.688

Moreover we can work out exactly the effect of rescaling the eigenvectors on the Taylor689

coefficients of the solution. To this end, consider690

P (k)(θ1, . . . , θm) =
∞∑
|α|=0

p(k)α θα691

692

for 1 ≤ k ≤ m solving the system of equations (15), and suppose that the eigenvectors693

ξj = (p
(1)
ej , . . . , p

(N)
ej ) have ‖ξj‖ = 1. Now choose scalings 0 < σj for 1 ≤ j ≤ m, and define the694

vector σ = (σ1, . . . , σm), as well as the new collection of functions695

P̂ (k)(θ1, . . . , θm) =

∞∑
|α|=0

p̂(k)α θα,696

697

where698

p̂(k)α = σαp(k)α , 1 ≤ k ≤ m.(17)699
700

Note that701

p̂
(k)
0 = σ0p

(k)
0 = pk702

703

and704

p̂(k)ej = σejp
(k)
0 = σjp

(k)
ej ;705

706

i.e., P̂ satisfies the first-order constraints given by (14).707
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Now define the new variables708

θ̂j =
θj
σj

709

710

for 1 ≤ j ≤ m. Then711

P̂ (k)(θ̂1, . . . , θ̂m) =

∞∑
|α|=0

p̂(k)α θ̂α712

=
∞∑
|α|=0

σαp(k)α θ̂α713

=
∞∑
|α|=0

p(k)α θα714

= P (k)(θ1, . . . , θm).715

Then716

P (k)(λ1θ1, . . . , λmθm) = f [P (k+1)(θ1, . . . , θm)]717

= f [P̂ (k+1)(θ̂1, . . . , θ̂m)].718

Combining these observations gives that719

f [P̂ (k+1)(θ̂1, . . . , θ̂m)] = P̂ (k)(λ1θ̂1, . . . , λmθ̂m),720
721

i.e., that P̂ is the solution of the system given by (15), subject to the linear constraints with722

eigenvectors scaled by σ. By uniqueness, P̂ is the only such solution. This shows that given723

one solution of (15) whose Taylor coefficients are {pα}, rescaling the eigenvectors by σ leads724

to a new solution of (15) whose Taylor coefficients are determined from {pα} by (17).725

3.2. Formal solution of the invariance equations. We now study the system of invariance726

equations (15) for a number of particular example problems. Our goal is to illustrate the727

derivation of the homological equations which are essential for numerically implementing the728

parameterization method.729

3.2.1. A second worked out example: Stable/unstable manifolds of a period two orbit730

the for Hénon map using multiple shooting parameterization. In this section f : R2 → R2
731

denotes the Hénon map defined in (7). Suppose that p0, q0 ∈ R2 is a saddle-type period two732

orbit for f , i.e., that733

f(p0) = q0 and f(q0) = p0,734
735

with p0 6= q0, that λ̃ ∈ R has |λ̃| < 1, that ξ, η ∈ R2 have736

Df2(p0)ξ = λ̃ξ and Df2(q0)η = λ̃η,737
738
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and that the remaining eigenvalue of Df2(p0), Df
2(q0) is unstable. Define739

λ =
√
λ̃.740

741

In this setting the system of invariance equations given by (15) reduces to742

f(Q(θ)) = P (λθ),
f(P (θ)) = Q(λθ).

(18)743

744

We look for P,Q of the form745

P (θ) =

∞∑
n=0

pnθ
n

746

747

and748

Q(θ) =
∞∑
n=0

qnθ
n

749

750

and require that751

P (0) = p0 and Q(0) = q0752
753

(so that q0, p0 denote the zeroth Taylor coefficient as well as the periodic orbit) and also that754

P ′(0) = p1 = ξ and Q′(0) = q1 = η,755
756

so that P and Q are tangent to the correct eigenspaces.757

We will derive the explicit form of the homological equation (16). To this end, note that758

P (λθ) =
∞∑
n=0

λnpnθ
n and Q(λθ) =

∞∑
n=0

λnqnθ.759

760

Writing761

pn =

(
p1n

p2n

)
and qn =

(
q1n

q2n

)
762

763

for the components of the Taylor coefficients, and employing the Cauchy product for power764

series, we have765

f(P (θ)) =


1 +

∞∑
n=0

p2n −
∞∑
n=0

n∑
k=0

ap1n−kp
1
k

∞∑
n=0

bp1n

766

767

and768

f(Q(θ)) =


1 +

∞∑
n=0

q2n −
∞∑
n=0

n∑
k=0

aq1n−kq
1
k

∞∑
n=0

bq1n

 .769

770
771
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Plugging these power series expansions into (18) and matching like powers of θ for n ≥ 2772

leads to773 

q2n −
n∑
k=0

aq1n−kq
1
k

bq1n

p2n −
n∑
k=0

ap1n−kp
1
k

bp1n


=


λnp1n

λnp2n

λnq1n

λnq2n

774

775

or776 

q2n − 2aq10q
1
n −

n−1∑
k=1

aq1n−kq
1
k

bq1n

p2n − 2ap10p
1
n −

n−1∑
k=1

ap1n−kp
1
k

bp1n


= λn


p1n

p2n

q1n

q2n

 .777

778

We move terms of order n to the left, move terms of order less than n to the right, and observe779

that the dependence on pn, qn is linear. This results in the equations780




0 0 −2aq10 1
0 0 b 0
−2p10 1 0 0
b 0 0 0

− λn


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




p1n

p2n

q1n

q2n

 =



a
n−1∑
k=1

q1n−kq
1
k

0

a

n−1∑
k=1

p1n−kp
1
k

0


.(19)781

782

Letting F : R4 → R4 be the map783

F (p1, p2, q1, q2) =


1 + q2 − aq21

bq1
1 + p2 − ap21

bp1

 ,784

785

we see that, indeed, (19) has exactly the form promised in (16). The point of working through786

the computation above is that we now know explicitly the form of the right-hand side of the787

homological equation, and this knowledge is used to implement numerical algorithms.788

Note that for all n ≥ 2, λn is not an eigenvalue of DF (p0, q0). This is because we assumed789

that p0, q0 is a hyperbolic saddle, and hence the only other eigenvalue has absolute value790

greater than one. Then |λn| < |λ| < 1 for all n ≥ 2, and hence λn is never an eigenvalue.791

Equation (19) is characteristic for DF (p0, q0), and we have that solutions exist and are unique792
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for any right-hand side and for as long n ≥ 2. This is a specific instance of a more general793

result, namely that a saddle with exactly one stable eigenvalue is never resonant. Solving (19)794

recursively for each 2 ≤ n ≤ K leads to the polynomial approximations795

PK(θ) =
K∑
n=0

pnθ
n and QK(θ) =

K∑
n=0

qnθ
n.796

797

Also note that if we consider instead the unstable eigenvalues, all of the comments above798

go through. We discuss numerical methods further in section 4.799

3.2.2. The homological equations for a period N point of Henon. Suppose now that800

p1, . . . , pN ∈ R2 is a periodic orbit of the Hénon map with least period N , and that λ̃ ∈ R801

and ξ1, . . . , ξN ∈ R2 have that802

DfN (pk)ξk = λ̃ξk803
804

for 1 ≤ k ≤ N . Define the map805

F (x1, y1, x2, y2, . . . , xN , yN ) =



1 + yN − ax2N
bxN

1 + y2 − ax22
bx2

...
1 + y1 − ax21

bx1


.806

807

Define808

λ =
N
√
λ̃.809

810

Note that p1, . . . , pN is a fixed point of F and that λ̃, ξ1, . . . , ξN can be computed by finding811

eigenvalues/eigenvectors for DF (p1, . . . , pN ).812

Let p0, p1 ∈ R2N be813

p0 =

 p1

...
pN

 and p1 =

 ξ1

...
ξN

 .814

815

We seek816

P (θ) =

 P (1)(θ)
...

P (N)(θ)

 ,817

818

solving the invariance equation, with819

P (k)(θ) =

∞∑
n=0

pknθ
n

820

821
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for pkn ∈ R2 for 1 ≤ k ≤ N . We write pkn = (pkn,1, p
k
n,2) to denote the components. Define822

pn ∈ R2N by823

pn =

 p1n
...
pNn

 .824

825

A computation similar to that illustrated in detail in section 3.2.1 shows that each pn ∈ R2N
826

with n ≥ 2 is a solution of the equation827

[DF (p0)− λnId2N×2N ] pn = SNn ,828
829

with SNn defined by830

SNn :=



a
∑n−1

k=1 p
N
n−k,1p

N
k,1

0

a
∑n−1

k=1 p
1
n−k,1p

1
k,1

0
...

a
∑n−1

k=1 p
N−1
n−k,1p

N−1
k,1

0


.831

832

Again, we see that the linear system has a unique solution for all n ≥ 2 by the assumption833

that the orbit is hyperbolic, as λn 6= λ for any n ≥ 2. Solving the system to order K leads to834

the polynomial approximation835

PK(θ) :=

K∑
n=0

pnθ
n.836

837

3.2.3. Example of a two-dimensional manifold for a three-dimensional map: Stable/838

unstable manifolds for periodic orbits of the Lomeĺı map. Consider the map f : R3 → R3
839

given by840

f(x, y, z) =

 z +Q(x, y)
x
y

 ,(20)841

842

where Q is the quadratic form843

Q(x, y) = α+ τx+ ax2 + bxy + cy2.844
845

We refer to (20) as the Lomeĺı map. It is standard to choose parameters normalized so that846

a+ b+ c = 1. The Lomeĺı map is a normal form for quadratic volume-preserving maps with847

quadratic inverse. In that sense it can be thought of as a three-dimensional generalization848

of the planar Hénon map. The dynamics of the Lomeĺı map are considered in a number of849

studies; see, for example, [29, 53, 54, 62].850
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Now let851

F (x1, y1, z1, . . . , xN , yN , zN ) =



zN +Q(xN , yN )
xN
yN
...

z1 +Q(x1, y1)
x1
y1


.852

853

Suppose that (p1, . . . , pN ) ∈ R3N is a fixed point of F ; i.e., p1, . . . , pN is a periodic orbit.854

We focus on the case which the orbit is hyperbolic with a complex conjugate pair of855

stable/unstable eigenvalues. More precisely, assume that DfN (pk) has a complex conjugate856

pair of eigenvalues λ̃, λ̃ ∈ C, and let ξk, ξ̄k be an associated choice of complex conjugate857

eigenvectors. Take λ and λ̄ complex conjugates with858

λ =
N
√
λ̃ and λ̄ =

N

√
λ̃.859

860

Of course we have again that λ, λ̄, ξ1, ξ̄1, . . . , ξN , ξ̄N can be found by computing eigenval-861

ues/eigenvectors of DF (p1, . . . , pN ).862

In this case we employ complex variables and look for P (k) : C2 → C3 solving the invariance863

equations864

f(P (N)(z1, z2)) = P (1)(λz1, λ̄z2)865

f(P (1)(z1, z2)) = P (2)(λz1, λ̄z2)866

...867

f(P (N−1)(z1, z2)) = P (N)(λz1, λ̄z2).868

We look for solutions in the form869

P (k)(z1, z2) =

∞∑
n1=0

∞∑
n2=0

pkn1,n2
zn1
1 zn2

2870

871

for each 1 ≤ k ≤ N , where pkn1,n2
∈ C3 for each n1, n2 ∈ N. The components are expressed as872

pkn1,n2
= (pkn1,n2,1

, pkn1,n2,2
, pkn1,n2,3

) ∈ C3. We write873

p0 =

 p1

...
pN

 , p1,0 =

 ξ1

...
ξN

 , and p0,1 =

 ξ̄1

...
ξ̄N

 ,874

875

for the zero- and first-order Taylor coefficients, and write more generally876

P (z1, z2) =

∞∑
n1=0

∞∑
n2=0

pn1,n2z
n1
1 zn2

2 ,877

878
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where879

pn1,n2 =

 p1n1,n2

...
pNn1,n2

 ,880

881

noting that882

P (k)(λz1, λ̄z2) =
∞∑

n1=0

∞∑
n2=0

λn1 λ̄n2p(k)n1,n2
zn1
1 zn2

2883

884

and (after using the two variable Cauchy product) that885

f [P (k)(z1, z2)] =



α+
∞∑

n1=0

∑
n2=0

∞
(
p
(k)
n1,n2,3

+ τp
(k)
n1,n2,1

+ q(k)n1,n2

)
zn1
1 zn2

2

∞∑
n1=0

∞∑
n2=0

p
(k)
n1,n2,1

zn1
1 zn2

2

∞∑
n1=0

∞∑
n2=0

p
(k)
n1,n2,2

zn1
1 zn2

2


,886

where887

q(k)n1,n2
=

n1∑
i=0

n2∑
j=0

ap
(k)
n1−i,n2−j,1p

(k)
i,j,1 + bp

(k)
n1−i,n2−j,1p

(k)
i,j,2 + cp

(k)
n1−i,n2−j,2p

(k)
i,j,2.888

889

Matching like powers for n1 + n2 ≥ 2 leads to890 
p
(N)
n1,n2,3

+ τp
(N)
n1,n2,1

+ q
(N)
n1,n2

p
(N)
n1,n2,1

p
(N)
n1,n2,2

 = λn1 λ̄n2


p
(1)
n1,n2,1

p
(1)
n1,n2,2

p
(1)
n1,n2,3

891

892

and893 
p
(k−1)
n1,n2,3

+ τp
(k−1)
n1,n2,1

+ q
(k−1)
n1,n2

p
(k−1)
n1,n2,1

p
(k−1)
n1,n2,2

 = λn1 λ̄n2


p
(k)
n1,n2,1

p
(k)
n1,n2,2

p
(k)
n1,n2,3

894

895

for 2 ≤ k ≤ N . Let sn1,n2 = (S
(N)
n1,n2 , S

(1)
n1,n2 , . . . , S

(N−1)
n1,n2 ) and896

S(k)
n1,n2

=


n1∑
i=0

n2∑
j=0

δn1,n2

j,k

(
ap

(k)
n1−i,n2−j,1p

(k)
i,j,1 + bp

(k)
n1−i,n2−j,1p

(k)
i,j,2 + cp

(k)
n1−i,n2−j,2p

(k)
i,j,2

)
0
0

 ,

(21)

897

898
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where we define899

δn1,n2

j,k :=


0 if j = n1 and k = n2,

0 if j = 0 and k = 0,

1 otherwise.

900

901

Then902

q(k)n1,n2
= 2ap

(k)
0,0,1pn1,n2,1 + bp0,0,1pn1,n2,2 + bp0,0,2pn1,n2,1 + cp0,0,2pn1,n2,2.903

904

Thus, the Taylor coefficient pn1,n2 is found by solving the homological equation905 [
DF (p0)− λn1 λ̄n2Id3N×3N

]
pn1,n2 = Sn1,n2 .(22)906

907

Again we remark that these are always uniquely solvable in the case under consideration,908

namely a periodic hyperbolic saddle with a complex conjugate pair. This is because if n1+n2 ≥909

2, then neither910

λn1 λ̄n2 = λ nor λn1 λ̄n2 = λ̄911
912

is possible, and since the Lomeĺı map is volume-preserving, the third eigenvalue must have913

opposite stability from λ, λ̄ (i.e., the eigenvalue is unstable if they are stable or vice versa).914

More generally a periodic orbit with a single complex conjugate pair of stable (or unstable)915

eigenvalues cannot be resonant.916

We write917

PK(θ) =
K∑
n=0

n∑
m=0

pn−mmθ
n−m
1 θm2918

919

to denote the polynomial approximation obtained by solving the homological equations to920

order K.921

Remark 3.5 (real parameterization). In the end, we are actually interested in the real922

dynamics of the Lomeĺı map and want the real image of P . By Considering (22), we see that923

solutions have the property924

pm2,m1 = pm1,m2 .925
926

This complex conjugate property of the coefficients of P implies that if we choose complex927

conjugate variables928

z1 = θ + iφ and z2 = θ − iφ929
930

and define the polynomial931

P̂ (θ, φ) = P (θ + iφ, θ − iφ),932
933

where P has coefficients solving (22), then P̂ parameterizes the real local stable/unstable934

manifolds associated with the periodic orbit.935
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3.2.4. Example of a nonpolynomial nonlinearity: Automatic differentiation for the936

standard map. We now consider the map f : R2 → R2 given by937

f(x, y) =

(
x+ a sin(y)

y + x+ a sin(y)

)
,(23)938

939

with a ≥ 0. The map is known as the standard map, or the Chirikov–Taylor map, and is940

widely studied as a toy model of symplectic dynamics [16, 36, 58]. For example, the mapping941

exhibits dynamics similar to the dynamics of a Poincaré section of a periodic orbit of a two942

freedom Hamiltonian system restricted to an energy surface. We now derive the homological943

equations for the parameterization of the stable/unstable manifold of a period N orbit of944

the standard map. This illustrates the use of our method for a system with nonpolynomial945

nonlinearities.946

Then suppose that p1, . . . , pN ∈ R2 are the points of a periodic orbit of least period N .947

Assume that the orbit is hyperbolic, and let ξ1, . . . , ξN ∈ R2 and λ̃ ∈ R denote the associated948

eigenvalues and eigenvectors. We let949

λ =
N
√
λ̃950

951

and look for solutions952

P (k)(θ) =

∞∑
n=0

p(k)n θn953

954

of (15) in this setting. Let us write955

p(k)n =

(
p
(k)
n,1

p
(k)
n,2

)
956

957

for 1 ≤ k ≤ N to denote the components of p
(k)
n .958

This difference between the present case and the examples discussed above is that the959

standard map has nonpolynomial nonlinearity, so that f [P (k)] cannot be evaluated directly960

using Cauchy products. Instead, we employ a technique sometimes called automatic differen-961

tiation for Taylor series, or simply automatic differentiation [46]. The idea is to exploit the962

fact that the sine and cosine functions are themselves solutions of simple differential equations.963

Thus, define for each 1 ≤ k ≤ N the functions S(k), C(k) by964

S(k)(θ) := sin
(
P

(k)
2 (θ)

)
965
966

and967

C(k)(θ) := cos
(
P

(k)
2 (θ)

)
968
969

and look for the Taylor series expansions970

∞∑
n=0

s(k)n θn = S(k)(θ)971

972
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and973

∞∑
n=0

c(k)n θn = C(k)(θ).974

975

Taking derivatives, we obtain976

d

dθ
S(k)(θ) = cos

(
P

(k)
2 (θ)

) d

dθ
P

(k)
2 (θ)977

978

and979

d

dθ
C(k)(θ) = − sin

(
P

(k)
2 (θ)

) d

dθ
P

(k)
2 (θ),980

981

which on the level of power series give982

∞∑
n=0

(n+ 1)s
(k)
n+1θ

n =

( ∞∑
n=0

cnθ
n

)( ∞∑
n=0

(n+ 1)p
(k)
n,2θ

n

)
983

=
∞∑
n=0

n∑
j=0

(j + 1)c
(k)
n−jp

(k)
j+1,2θ

n,984

and similarly985

∞∑
n=0

(n+ 1)c
(k)
n+1θ

n = −
∞∑
n=0

n∑
j=0

(j + 1)s
(k)
n−jp

(k)
j+1,2θ

n.986

987

Of course we have988

s
(k)
0 = sin

(
p
(k)
0,2

)
and c

(k)
0 = cos

(
p
(k)
0,2

)
989
990

as well as991

s
(k)
1 = cos

(
p
(k)
0,2

)
p
(k)
1,2 and c

(k)
1 = − sin

(
p
(k)
0,2

)
p
(k)
1,2992

993

Matching like powers of n for n ≥ 2 gives994

s(k)n =
1

n

n∑
j=1

jc
(k)
n−jp

(k)
j,2 = c

(k)
0 p

(k)
n,2 +

1

n

n−1∑
j=1

jc
(k)
n−jp

(k)
j,2995

996

and997

c(k)n =
−1

n

n∑
j=1

js
(k)
n−jp

(k)
j,2 = −s(k)0 p

(k)
j,2 −

1

n

n−1∑
j=1

js
(k)
n−jp

(k)
j,2 .998

999

1000
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Now let1001

P (θ) =

 P (1)(θ)
...

P (N)(θ)

 .1002

1003

Then1004

P (λθ) =
∞∑
n=0

λnpnθ
n,1005

1006

while1007

f [P (k)(θ)] =

 P k1 (θ) + a sin
(
P

(k)
2 (θ)

)
P k1 (θ) + P

(k)
2 (θ) + a sin

(
P

(k)
2 (θ)

)
1008

=

∞∑
n=0

(
p
(k)
n,1 + as

(k)
n

p
(k)
n,1 + p

(k)
n,2 + as

(k)
n

)
θn.1009

The nth coefficient of this power series is1010

(
p
(k)
n,1 + as

(k)
n

p
(k)
n,1 + p

(k)
n,2 + as

(k)
n

)
=


p
(k)
n,1 + ac

(k)
0 p

(k)
n,2 +

a

n

n−1∑
j=1

jc
(k)
n−jp

(k)
j,2

p
(k)
n,1 + p

(k)
n,2 + ac

(k)
0 p

(k)
n,2 +

a

n

n−1∑
j=1

jc
(k)
n−jp

(k)
j,2

1011

=

 1 a cos
(
p
(k)
0,2

)
1 1 + a cos

(
p
(k)
0,2

)
[ p

(k)
n,1

p
(k)
n,2

]
+


a

n

n−1∑
j=1

jc
(k)
n−jp

(k)
j,2

a

n

n−1∑
j=1

jc
(k)
n−jp

(k)
j,2

 .1012

Matching like powers in the invariance equations gives that the homological equation has1013

the desired form1014

[DF (p0)− λnId2N×2N ] pn = Σn(24)1015
1016

for n ≥ 2, where Σn is given by1017

Σn =


Σ
(N)
n

Σ
(1)
n
...

Σ
(N−1)
n

1018

1019
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and1020

Σ(k)
n =


−a
n

n−1∑
j=1

jc
(k)
n−jp

(k)
n,2

−a
n

n−1∑
j=1

jc
(k)
n−jp

(k)
n,2

1021

1022

for 1 ≤ k ≤ N .1023

Note that once (p
(k)
n,1, p

(k)
n,2) are computed as the components of the solution of the1024

n-th homological equation (24), s
(k)
n+1 and c

(k)
n+1 are computed and stored for use in the solution1025

of the (n + 1)th homological equation. The automatic differentiation scheme just described1026

allows us to compute the power series coefficients of the composition sin(P
(k)
2 (θ)) for the cost1027

of two Cauchy products. However, this approach requires us to store the coefficients s
(k)
n and1028

c
(k)
n throughout the computation.1029

3.2.5. Further remarks on automatic differentiation: Nonlinearities given by the ele-1030

mentary functions of mathematical physics. The procedure discussed in section 3.2.4 can be1031

made quite general. We elaborate briefly below, but the interested reader should also consult1032

[11, 38, 45, 46, 74] for a more complete discussion. In particular, the first reference describes1033

a general algorithmic framework for manipulation of power series in nonlinear problems. The1034

idea is that the elementary functions of mathematical physics comprising the nonlinear terms1035

in many applied problems are themselves solutions of simple differential equations. This lets1036

us extend the ideas exploited in section 3.2.4 to many other situations.1037

To formalize the discussion, suppose1038

P (θ) =
∞∑
n=0

pnθ
n, Q(θ) =

∞∑
n=0

qnθ
n, R(θ) =

∞∑
n=0

rnθ
n

1039

1040

are power series with pn, qn, rn ∈ C for n ≥ 0. The following lists several useful results for1041

some common nonlinear functions.1042

• Addition: If R(θ) = P (θ) +Q(θ), then1043

rn = pn + qn.1044
1045

• Multiplication: If R(θ) = P (θ)Q(θ), then1046

rn =

n∑
k=0

pn−kqk.1047

1048

• Division: If R(θ) = P (θ)/Q(θ), then1049

rn =
1

q0

(
pn −

n∑
k=1

rn−kqk

)
.1050

1051
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• Powers: If α ∈ C and R(θ) = P (θ)α, then1052

rn =
1

np0

n−1∑
k=0

(nα− k(α+ 1))pn−krk.1053

1054

• The natural exponential: If R(θ) = eP (θ), then1055

rn =
1

n

n−1∑
k=0

(n− k)pn−krk.1056

1057

• The natural logarithm: If R(θ) = logP (θ), then1058

rn =
1

p0

(
pn −

1

n

n−1∑
k=1

(n− k)rn−kpk

)
.1059

1060

• Sine and cosine: If R(θ) = sin(P (θ)) and Q(θ) = cos(P (θ)), then1061

rn =
−1

n

n∑
k=1

kqn−kpk1062

1063

and1064

qn =
1

n

n∑
k=1

krn−kpk.1065

1066

See [45] for proofs. Using these formulas, one could apply the techniques of the present work1067

to any map with nonlinearities given by the elementary functions. Moreover similar recursion1068

can be obtained for other elementary functions such as Bessel functions, elliptic integrals,1069

etc. Moreover techniques of automatic differentiation extend to functions of several complex1070

variables via the radial gradient method discussed in section 2.3.2 of [39].1071

4. Numerical implementation and example computations. The results of the previous1072

section lead to numerical procedures as follows: for a period N orbit, find the m stable (or1073

unstable) eigenvalues, and compute associated eigenvectors. This latter step involves an arbi-1074

trary choice of the scalings. Suppose that polynomial approximation to order K ≥ 2 is desired1075

and that the eigenvalues are nonresonant. Then solve the homological equations in increasing1076

order 2, 3, . . . , up to K. This leads to a collection of polynomials P 1
K , . . . , P

N
K : Rm → RM .1077

The Kth order polynomials P jK : Rm → RM for 1 ≤ j ≤ m are defined and analytic on1078

all of Rm. Of course we cannot expect the associated truncation error to be small on all1079

Rm, and we always restrict ourselves to a numerical domain on which the approximation is1080

reasonable. Recall that by Claim 3 from section 3.1, we are free to fix the numerical domain1081

as Bm
1 (0) ⊂ Rm and choose the scalings of the eigenvectors so that the polynomial is well1082

behaved on this domain. Evaluating the polynomials only for variables smaller than one leads1083

to numerically stable results.1084
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The only remaining question is how to choose the scalings of the eigenvectors. We would1085

like to choose these scalings as large as possible so as to parameterize large regions of the1086

stable/unstable manifold and hence learn as much as possible about the manifolds far from1087

the periodic orbit. On the other hand, we also want the approximation to be reliable on1088

Bm
1 (0). We quantify the notion of reliability by defining the a posteriori error associated with1089

the polynomials P 1
K , . . . , P

N
K as the positive number1090

εK := max
1≤j≤M

(
sup

θ∈Bm1 (0)

∥∥∥f(P jK(θ1, . . . , θm))− P j+1
K (λ1θ1, . . . , λmθm)

∥∥∥) ,(25)1091

1092

where we let PN+1
K (θ) = P 1

K(θ), i.e., impose periodicity. If the a posteriori error associ-1093

ated with PK is small, this means that the conjugacy is approximately satisfied, and we are1094

reasonable confident (but not certain) that our approximation is good.1095

The following describes an algorithm which, given an approximation order K and a desired1096

numerical numerical tolerance εtol, adaptively rescales the eigenvectors until the scalings are1097

as large as possible without exceeding the numerical tolerance. The discussion in the next1098

section sheds further light on the procedure.1099

• Inputs: Choose a period N orbit and compute its eigenvectors scaled initially to1100

length one. Fix a tolerance εtol and a polynomial order of approximation K.1101

• Step 1: Compute the Taylor coefficients of P 1, . . . , PN by solving the homological1102

equations to order K.1103

• Step 2: Evaluate the a posteriori error εK defined in (25) (or as discussed in Remark1104

4.1 below).1105

• Step 3: If εK < εtol, then the scale is increased and Step 2 is repeated. If εtol ≤ εK ,1106

then the scale is decreased.1107

Repeat until εK is below but within (for example) 95% of εtol.1108

Remark 4.1 (analytic norms). In practice we can obtain efficient numerical bounds on the1109

a posteriori error by computing only on the level of the coefficients. In fact if g : Cm → C is1110

analytic on the unit poly-disk1111

Dm
1 (0) :=

{
z = (z1, . . . , zm) ∈ Cm | max

1≤j≤m
|zj | < 1

}
,1112

1113

then by the maximum modulus principle and the triangle inequality, we have1114

sup
θ∈Bm1 (0)

|g(θ)| ≤ sup
z∈∂Dm1 (0)

|g(z)| ≤
∞∑
n=0

|gn|,1115

1116

where gn ∈ C are the power series coefficients of g. Note that the inequality above holds even1117

when one or more of the quantities are infinite. The final quantity on the right is an `1 norm1118

on the Taylor coefficient, sometimes referred to as an analytic norm.1119

Consider the a posteriori error in (25) in the case that f is a polynomial. Then f(P jK(θ1,1120

. . . , θm) and P j+1(λ1θ1, . . . , λmθm) are both polynomials so that1121



COMPUTING MANIFOLDS FOR PERIODIC ORBITS OF MAPS 35

f(P jK(θ1, . . . , θm))− P j+1
K (λ1θ1, . . . , λmθm) =

K̂∑
|α|=0

eαθ
α

1122

1123

for some eα ∈ RM . Moreover the coefficients eα are computed at the cost of an evaluation of1124

f (on a polynomial). Then we can bound the a posteriori error by1125

εK ≤
K̂∑
|α|=0

‖eα‖.1126

1127

If P 1
K , . . . , P

N
K are good approximations, then the coefficients eα will be small, and this provides1128

a good bound. If f is not a polynomial, then we must include a Taylor remainder bound in1129

the estimates above.1130

4.1. A detailed numerical example: Eigenvector scalings and the size of the local1131

manifold embedding. Returning to the Hénon map as defined in (7), consider the classic1132

parameter values of a = 1.4 and b = 0.3, and note that the points1133

p0 =

(
−0.475800051175056
0.292740015352517

)
and q0 =

(
0.975800051175056
−0.142740015352517

)
1134

1135

have f(p0) = q0 and f(q0) = p0; i.e., they provide a period two orbit. We check that Df2(p0)1136

has an unstable eigenvalue of λ̃ = −3.010100667740269 (of course this is also an unstable1137

eigenvalue of Df2(q0)) and choose associated eigenvectors1138

ξ̃ =

(
0.807903584327622
−0.097548838689916

)
and η̃ =

(
−0.564145799517692
−0.139698029289516

)
.1139

1140

Taking λ =
√
λ̃ = 1.734964169007611i, we have the necessary ingredients to solve the homo-1141

logical equations (19) and compute polynomial charts P (θ) and Q(θ) for the local unstable1142

manifolds of the period two orbit to any desired finite order of approximation K.1143

Suppose (somewhat arbitrarily) that, given the choice of eigenvectors above, we compute1151

the parameterizations to order K = 50. We evaluate the resulting polynomials PK and QK1152

on the unit domain θ ∈ [−1, 1] and obtain the approximations illustrated in the left frame of1153

Figure 4. Now we make several remarks.1154

• The simultaneous computation of the 51 two-dimensional Taylor coefficients p0, . . . ,1155

p50, q0, . . . , q50 ∈ C2 of PK and QK (i.e., solution of the homological equations to order1156

K) takes 0.004 seconds using MATLAB on a Mac Pro with a 3.7 GHz quad-core Intel1157

Xenon E5 processor. (All the computation times discussed in the paper are attached1158

to this desktop.)1159

• Checking the conjugacy for each of the two manifolds at 500 uniformly spaced sample1160

points in [−1, 1] yields an a posteriori error estimate of ε = 1.33× 10−15.1161

• The image of PK (blue curve in the left frame of Figure 4) has arc length1162 ∫ 1

−1

√(
d

dθ
PK1 (θ)

)2

+

(
d

dθ
PK2 (θ)

)2

dθ ≈ 1.4.1163

1164
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Figure 4. Parameterized unstable manifold of a period two orbit of the Hénon map: polynomial approxi-
mation to order K = 50 using an eigenvector of unit length. The resulting error is on the order of 10−15. Left:
the top-left (blue) curve is the manifold attached to p0, and the bottom-right (magenta) curve is the manifold
attached to q0. Each curve is the image of the unit interval, and each has arc length approximately 1.4. Right:
base 10 logarithm of the Taylor coefficients as a function of order. Each Taylor coefficient is a vector with two
components, and we plot only the log of the norm. Colors in the right frame match the conventions in the left
frame. Coefficient computation takes 0.004 seconds.

1144

1145

1146

1147

1148

1149

1150

Note that since the parameterizations are given by polynomials, the arc length in-1165

tegrals can be evaluated almost exactly using a power series method. Only com-1166

puting the square root of a power series—using the powers law of section 3.2.5 with1167

α = 1/2—requires truncation. The arc length for QK (magenta curve in the left frame1168

of Figure 4) is also approximately 1.4.1169

• The logarithm base 10 of the magnitude of the Taylor coefficients is plotted versus1170

the order of the coefficient in the right frame of Figure 4. The coefficients decay1171

exponentially fast, and the coefficients of order 50 have magnitude 10−60.1172

A closer look at the right frame of Figure 4 suggests that the coefficients of the parame-1173

terization are decaying too fast to be numerically significant after an order of about K = 25,1174

(For n ≥ 25, the magnitude of the Taylor coefficients of both polynomials is below 10−16, i.e.,1175

below double precision machine epsilon). It is therefore reasonable to rescale the eigenvector1176

to get a slower decay rate. Keeping the same numerical domain of [−1, 1], we should expect1177

the result to parameterize a larger section of the local unstable manifold.1178

Running the computations a second time, keeping K = 50, and taking1185

p1 = 10ξ̃ and q1 = 10η̃1186
1187

results in the parameterizations illustrated in Figure 5. Again, the computation takes 0.0041188

seconds and results in a conjugacy error on the order of ε = 10−7. However, the arc length1189

of the manifolds is now about 7.3. The resulting local unstable manifold parameterizations1190

suggest a substantial portion of the Hénon attractor, as seen in the left frame of Figure 5.1191

Note that in this example the Taylor coefficients initially grow, reaching a maximum length1192

of almost 104 before the exponential decay kicks in. The order N = 50 coefficients have1193

magnitude approximately 10−7, which is roughly the magnitude of the conjugacy error.1194
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Figure 5. Rescaled local parameterizations: polynomial approximation to order K = 50 using an eigenvector
of length 10. The resulting error is on the order of 10−7. New curves have arc length approximately 7.3. Color
conventions are as in Figure 4. Coefficient computation takes 0.004 seconds.

1179

1180

1181

Figure 6. Rescaled local parameterizations: polynomial approximation to order N = 110 using an eigenvec-
tor of length 22. The resulting error is on the order of 10−4. New curves have arc length approximately 12.1.
Color conventions are as in Figure 4. Coefficient computation takes 0.0085 seconds.

1182

1183

1184

Indeed, if we keep this scaling factor of 10 but compute the manifolds to order N = 60,1195

then the resulting manifolds have the same length and look exactly like the parameterizations1196

illustrated in the left frame of Figure 5. But the N = 60 coefficient is on the order of 10−121197

in magnitude, and the resulting conjugacy error is on the order of 10−12.1198

We remark that while increasing the order of the computation past N = 60 does lead1199

to smaller coefficients, it does not further improve the conjugacy error. But it is easy to see1200

why. Note that the largest polynomial coefficient is on the order of 104, so that the smallest1201

numerically significant coefficients are those of order 10−12 (a 16-digit spread). To obtain1202

more accurate results we would have to use extended precision computations.1203

Figure 6 illustrates a final result, which seems to be near the limit of what can be done1204

in this example using only double precision arithmetic. The local parameterizations are1205
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computed to polynomial order N = 110, with the initial eigenvectors scaled by a factor of 22.1206

Each curve has arc length roughly 12.1, and the computation takes roughly 0.0085 seconds.1207

The Conjugacy error is ε = 6.9 × 10−4, and the resulting local manifold parameterizations1208

uncover even more of the Hénon attractor. However, increasing the eigenvector scaling further1209

results in polynomial approximations which diverge visibly.1210

Remark 4.2 (numerical implementation). The interested reader can reproduce these results1211

by running the program1212

henonPer2Ex1_paper.m1213

which is available for free download from the authors’ webpage for the preprint version of this1214

paper [34]. By changing only the variables N and scale, one obtains any of the results above.1215

The interested reader is invited to experiment with these computations.1216

4.2. Comparison with the naive approach. The computational advantages of the1217

multiple-shooting parameterization method developed in the present work are seen clearly1218

when we repeat the computation of section 4.1 using the naive approach. More precisely, we1219

compute the parameterization of the local unstable manifold associated with the fixed point1220

p0 of the composition map f ◦ f = g, where g is as given in (8).1221

Taking the approximation order K = 60 and iteratively solving the homological equations1222

developed in section 2.3 results in a polynomial approximation that we denote by RN . We1223

compare this with our earlier results for the same manifold, already reported in Figure 5.1224

Carefully choosing the scaling of the eigenvector in the computation of RN (scaling it to1225

6.512 where the eigenvector in the computation of PN was scaled to 8) provides the results1226

illustrated in Figure 7. The Figure makes clear the virtue of the carefully chosen scaling: we1227

obtain almost exactly the same local parameterization of the unstable manifold that we had1228

before (“same” in the sense of both the embedding in phase space and the Taylor coefficient1229

decay). That there exists such a choice of scaling is not a surprise: the two methods compute1230

the same manifold.1231

However, the Naive computation takes about 0.035 seconds—or almost a factor of five1238

times as long as the computation using the multiple shooting approach—after which we obtain1239

only one of the two manifolds computed in section 4.1. Computing both manifolds takes 101240

times as long as the multiple shooting approach. In addition, the conjugacy error is an order1241

of magnitude worse than the multiple shooting case.1242

The poorer run time results from the need to compute the triple and quadruple Cauchy1243

products appearing in the composition map (composition of the quadratic Hénon map with1244

itself). Indeed, a more telling comparison between the two methods is to count floating point1245

operations in the evaluation of the right-hand sides of the respective homological equations.1246

Recalling (19), we see that the right-hand side of the homological equation for the multiple-1247

shooting method requires evaluation of only two quadratic Cauchy products, while by (12),1248

the right-hand side of the homological equation for the composition approach requires two1249

quadratic Cauchy products as well as a cubic and a quartic evaluation. For the computations1250

illustrated in Figure 7, evaluating the right-hand side of the homological equations in the1251
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Figure 7. Composition versus multiple shooting: unstable manifold of p0 computed two ways. Blue curve
corresponds to the parameterization computed using multiple shooting. Computational parameters are the same
as reported in Figure 5. The black stars illustrate the same manifold, computed as the unstable manifold of a
fixed point of the composition map. The results look identical, but the composition approach takes five times
as long to compute and requires more than 300 times as many floating point operations. The error using the
composition approach is more than an order of magnitude worse.

1232

1233

1234

1235

1236

1237

naive approach is more than 300 times as expensive to compute than the right-hand side for1252

the multiple-shooting parameterization method.1253

The interested reader can repeat these computations by running the program1254

henonPer2_withComp.m.1255

We remark that on many laptop and desktop computers (less powerful than the Mac Pro)1256

the multiple-shooting method over performs the naive method by an even greater factor than1257

reported above.1258

4.3. Long periodic orbits for the Hénon map. One strength or our algorithm is that1262

it applies to periods much higher than two. Figure 8 illustrates the results of our procedure1263

applied to a single orbit of period M = 95 for the Henon map with the classic parameters1264

a = 1.4 and b = 0.3. The 2× 95 parameterization functions are approximated to polynomial1265

order M = 50, and we employ the adaptive rescaling algorithm with a desired tolerance of1266

εtol = 10−14. The algorithm results in an eigenvector scaling of s = 5.37 for the stable and1267

s = 2.74 for the unstable manifold.1268

Remark 4.3 (finding orbits of long period). We find periodic orbits (long or otherwise) for1269

the Hénon map as follows. We pick any point “near” the attractor (say x = 0, y = 1) and1270

iterate a large number of times (say K = 105 or more). Ignoring the first, say 100, points on1271

the resulting orbit segment, we have a collection of points near the attractor. We now search1272

this collection for orbits which are approximately period M for every 2 ≤ M ≤ Mmax. For1273

the Hénon map, we typically take Mmax < 100.1274

When we find an orbit segment which is approximately period M , we run a Newton1275

method to obtain a better orbit. We also check that the orbit we obtain has not already been1276
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Figure 8. Manifolds attached to a period 95 orbit for the Hénon map: classic parameter values, approx-
imation order N = 50, and eigenvectors with optimal scaling. A posteriori error held below 10−14. Unstable
manifolds are tangent to the attractors, and stable manifolds are normal. Colors are chosen at random.

1259

1260

1261

found. If the orbit is new, that is, if M is the least period of the orbit, then we add it to1277

our list. This is a typical search procedure based on the notion that the dynamics on the1278

attractor are uniquely ergodic; hence a single long orbit should convey the same information1279

as sampling “uniformly” over the attractor. The procedure just described was also used to1280

find the orbits discussed in Remark 1.2 and illustrated in Figure 1.1281

4.4. Long periodic orbits in the standard map. In this section we consider several1288

example results for the standard map given by (23) with a = 2.1, i.e., far from the inte-1289

grable/perturbative case. Recall that this map has transcendental nonlinearity given by the1290

sine function. Once we choose a periodic orbit of period M , we compute the Taylor coef-1291

ficients by solving the homological equations given by (24). For example, the top frame of1292

Figure 9 illustrates the local unstable manifolds attached to a period four point approximated1293

to polynomial order N = 200. The eigenvector is scaled to s = 1.6.1294

The bottom frame of Figure 9 illustrates the stable/unstable manifolds attached to a1295

period 25 orbit of the standard map, again approximated to polynomial order N = 200.1296

The stable and unstable manifolds are scaled by s = 0.95 and s = 0.98, respectively. The1297

inlay in the figure “zooms in” on one of the KAM islands (or secondary tori) surrounding the1298

primary family of invariant circles in the standard map. This island shows yet another layer1299

of islands (or tertiary tori), and our period 25 orbit is the hyperbolic “twin” of the (presumed)1300

period 25 elliptic orbit in the center of the tertiary tori. The local stable/unstable manifolds1301

parameterized here already show homoclinic intersections.1302
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Figure 9. The standard map with a = 2.1: elliptic island near the fixed point at (0, π). The green points
illustrate the dynamics of “typical orbits” and are obtained by simply iterating a large number of sample points.
Viewing the hyperbolic dynamics requires a more deliberate approach. Top: local stable and unstable manifolds
attached to a period four orbit. Bottom: local stable and unstable manifolds attached to a period 25 orbit. Inlay
zooms in around a secondary torus and illustrates homoclinic intersection points. Unstable manifolds are blue
and stable manifolds are red.

1282

1283

1284

1285

1286

1287

The interested reader can repeat these computations by running the programs1303

standardMapPaperEx_per4.m1304

and1305

standardMapPaperEx_per25.m.1306
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Remark 4.4 (finding long periodic orbits for the standard map). The standard map is an1307

area preserving map, and hence it has no nontrivial attractor. The full map is not uniquely1308

ergodic, and the strategy described in Remark 4.3 will not work. Moreover, simply sampling1309

the phase space can be misleading, as there are many invariant circles which will be hard to1310

distinguish from long periodic orbits numerically.1311

The orbits in the examples above are found by “eyeballing” the phase space portrait and1312

looking for interesting features. For example, looking only at the green points in Figure 9, we1313

see that the dominant feature is the period four KAM islands around the primary family of1314

circles about the origin.1315

Standard results for area-preserving maps tell us to expect an elliptic period four orbit1316

in the middle of these islands, and also that the elliptic period four point should have an1317

associated twin, that is, there should be a hyperbolic period four orbit nearby. A simple1318

inspection of the picture suggests that one point near this orbit is x = −0.5, y = 2.5. We1319

run a Newton method with this as the initial condition and obtain the hyperbolic period four1320

point accurate to machine precision. Computing the eigenvectors and solving the homological1321

equations is straightforward. The initial guess for the period 25 orbit was obtained in precisely1322

the same manner.1323

4.5. Period four vortex bubble in the Lomeĺı map. From the planar examples mentioned1324

in the previous sections, one can learn a great deal about the dynamics of the system simply1325

by phase space sampling. For example, iterating almost any initial point in the plane for long1326

enough under the Hénon map yields the familiar picture of the attractor. Similarly, the green1327

points in Figures 9 give a reasonable impression of the dynamics in the standard map for1328

a = 2.1.1329

For dissipative maps of R3, things are not so different. Such maps typically have attractors,1330

and simply iterating a collection of points provides a good picture of the dynamics. For1331

volume-preserving maps of R3, the situation is somewhat less clear.1332

Consider, for example, the Lomeĺı map given by (20). Plotting a typical bounded orbit of1333

the system leads to an amorphous blob. And plotting many such orbits results in a “thick”1334

point cloud that may tell us very little. The system, however, does admit many invariant tori.1335

Figure 10, for example, illustrates a number of orbits for the system with parameters1336

a = 0.5, b = −0.5, c = 1, τ = 1.333333333, and α = 0.3444444444. These orbits illustrate1337

some period four invariant tori, secondary period four tori (or invariant circles?) about these,1338

and finally a single invariant torus enclosing the entire structure. For each object, we are1339

simply iterating a single point, which is presumably near the invariant torus or circle, and we1340

do not have a parameterization of the tori.1341

Moreover these orbits are not “typical”: rather, they were identified by eye as “interesting”1342

results from a rather larger sampling of phase space. Such a search is both time consuming and1343

ad hoc. Nevertheless it yields some interesting period four structures. The reader interested1344

in the dynamics of the Lomeĺı map may want to review the works of [15, 29, 53, 54, 62, 64].1345

Indeed, the period four tori discussed here are also seen in [54].1346

The strategy of simply iterating points and examining the results for structure will not1356

directly tell us anything about hyperbolic objects. However, based on these results we can1357
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Figure 10. Quasi-periodic invariant objects for the Lomeĺı map: Top left: period four invariant tori
encircled by invariant circles. Middle right: same tori with longer invariant circles. Bottom: period one
invariant torus encasing the period four structure. All of these invariant structures were located by phase space
sampling.

1347

1348

1349

1350

guess that there should be a pair of hyperbolic period four points near the top and bottom of1358

the opening of the period four torus. Similarly, we can guess (or work out directly by hand)1359

that there are a pair of fixed points near the top and bottom of the opening of the larger1360

surrounding torus.1361

Once we have located the period four points (or fixed points), it is a simple procedure1362

to compute the corresponding eigenvectors and solve the homological equations for the one-1363

and two-dimensional stable/unstable manifolds attached to them. The results are illustrated1364

in Figure 11. These parameterized local manifolds, when combined with the quasi-periodic1365

structures found through phase space sampling, provide substantial insight into the phase1366

space structure of the system.1367

The interested reader can repeat these computations by running the program1368

lomeliPerMScript2D.m.1369

We remark that the computations for the two-dimensional manifolds have not been optimized1370

for speed, but the computations run in less than a minute.1371
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Figure 11. Hyperbolic invariant objects for the Lomeĺı map: Top left: 2d local stable/unstable manifolds of
the fixed points. Quasi-periodic invariant tori (periods one and four) seen inside. Top right: 1d stable/unstable
manifolds attached to the fixed points (green and yellow spheres). Also shown are 1d and 2d stable/unstable
manifolds attached to the period four points. Bottom: the stable/unstable manifolds of fixed points and period
four orbit along with the period four invariant tori.

1351

1352

1353

1354

1355

5. Conclusions. This work presents a framework for efficient and automatic high-order1372

computation of polynomial approximations of local stable/unstable manifolds attached to1373

periodic orbits of maps. We gave example computations illustrating the application of our1374

method to long periodic orbits (up to period 100 or more) to maps with nonpolynomial1375

nonlinearities, and to manifolds of dimensions one and two (though in principle our techniques1376

apply to manifolds of any dimension). Several features of the method are that it recovers the1377

dynamics on the manifold, that it can follow folds in the embedding, and that it admits a1378

natural notion of a posteriori error.1379

We also compared the multiple-shooting parameterization method with a naive appli-1380

cation of the parameterization method for fixed points of the composition map. Here we1381

see clearly that while both methods accurately compute the local manifolds, the multiple-1382

shooting approach is much more efficient in terms of runtime, floating point operations, and1383

accuracy. Moreover, from the point of view of implementation, a major advantage of the1384

multiple-shooting approach is that, regardless of the period of the orbit, we deal only with1385

the nonlinearity of the original map. If, on the other hand, we compute compositions, we face1386

exponential growth of the complexity of the nonlinearity.1387
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In practice the high-order parameterizations developed here are often “global enough” to1388

uncover homoclinic connections. This suggests that the method could be helpful in computer-1389

assisted existence proofs, a topic which will be the object of future study. Indeed, it seems pos-1390

sible to combine the techniques of [32] with the recent work of [20, 43] and the1391

parameterization method of the present study to obtain computer-assisted proofs of homoclinic1392

and heteroclinic connecting dynamics for infinite-dimensional systems. Another interesting1393

project would be to apply the methods of the present work to the difficult stable/unstable1394

manifold computations of the period five point discussed in [7]. Unfortunately, the explicit1395

form of the map used for that study is not given in the reference (however, the authors remark1396

that the map is an 11th-order polynomial, a fact which suggests that the multiple-shooting1397

approach of the present work could be a great help).1398

Another interesting direction of future research would be to apply rigorous globalization1399

methods such as those of [66, 78] to grow the local manifolds studied here. This could lead to1400

a better understanding of the connecting orbit structure and topological entropy for discrete1401

time systems.1402
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