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Abstract—Heavy-tailed models of computer network traffic
have been shown to more accurately reflect actual traffic distribu-
tions of many traffic features than methods based on exponential
distributions. The power-law tail inherent to the alpha-stable
distribution better accommodates network traffic properties such
as impulsiveness, self-similarity, and long-range dependence, en-
abling more precise models and more accurate network anomaly
detection. Beginning from individual traffic processes, this work
presents two explanatory mathematical methods for network
aggregation which lead to either Gaussian or alpha-stable traffic
distributions. The first method, based on the generalized central
limit theorem, shows how self-similarity originates from an
impulsive-noise-based representation of individual processes. A
second method based on renewal theory supports the predictions
of the first method while also permitting estimation of rates of
convergence. We develop working models of these methods to
empirically validate our aggregation approach and provide an
explanation for the heavy tails and varieties of scaling observed
in network traffic.

Index Terms—alpha-stable, computer network traffic model,
heavy-tail, long-range dependent, self-similar

I. INTRODUCTION

While network traffic is known to be bursty, self similar
(SS), and long-range dependent (LRD), it remains an open
problem to develop simple models that both explain and
reproduce these features [1]. Another open question involves
the distribution of aggregated network traffic: Heavy tails of
many features (e.g., packet rate, flow size, inter-arrival times)
have been well documented, but disagreement exists regarding
an overall best-suited distribution to characterize features for
either modeling or anomaly detection [2]–[4].

The explanatory models described by Willinger et al. require
key milestones of discovery, construction, and validation [1].
The discovery examined in this work is the tendency, in larger
networks, of certain network traffic features including packet
rate to trend towards alpha-stable distributions [3], [4]. As
power-law distributions in network traffic are well-known, the
more interesting part of this discovery is that the authors have
frequently found non-parametric or Gaussian distributions of
the same features in smaller networks. The focus of our
efforts thus becomes identifying mechanisms that can deliver
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Gaussian as well as alpha-stable distributions and that also
reflect characteristics of actual network traffic. Our results can
also provide justification for the coexistence of fine and coarse
scaling recently observed in a longitudinal study of network
traffic [5].

The milestone of construction begins with the observation
that, for a given device, traffic processes occur at a few
typical rate levels and can be characterized as impulses. This
is illustrated in Figure 1, a traffic rate plot of traffic to a single,
centrally-managed device on a medium-sized campus network.

Over the nearly 15 minutes of minimal user activity, most
traffic events are automated, periodic backup and sync pro-
cesses, mostly at low rates. When we add a human doing
typical actions such as streaming videos or music, the number
and magnitude of these impulses change while their overall
impulsive nature is preserved, as shown in Figure 2.

The aggregated traffic of these impulses in a network has
long been modeled using Lévy processes {Xt : t ≥ 0} such
as Poisson and fractional Brownian motion [6]. Leveraging
previous work [3], [4], we propose the alpha-stable distribution
as an alternative Lévy-based model for this aggregated traffic
due to its strong theoretical connections to SS and LRD. As
previously discussed, many features of network traffic are
known to be heavy-tailed [7]; random variables (RVs) with
heavy-tailed distributions belong to the domain of attraction

Figure 1. Rate plot of 12 minutes of traffic received at a single host with
minimal automated and no intentional user activity.



Figure 2. Rate plot of nearly 12 minutes of traffic received at a single local
host with some user interaction and typical streaming activity (e.g., YouTube
and Amazon music). Note that even with user interaction and more activity,
traffic remains impulsive and loosely consistent in magnitudes.

of stable processes per the Generalized Central Limit Theorem
(GCLT) of Gnedenko and Kolmogorov and they are the
only distributions with a non-empty domain of attraction.
Self-similarity is similarly well documented [7], [8]; Lévy
processes are SS if and only if alpha-stable [9].

While the macro properties of network traffic and empirical
observation support an alpha-stable approach to modeling
aggregated traffic, to our knowledge the mechanism of ag-
gregation that can result in alpha-stable and Gaussian traffic
distributions has not been defined in the literature. The primary
contributions of this work are to explain how individual device
traffic aggregates to larger flows that can have exponential- or
heavy-tailed characteristics, and how the origin of SS impacts
the final aggregated traffic distributions. This theory requires
no assumptions regarding inter-arrival ties or packet rates
and is thus more general than other heavy-tailed modeling
approaches.

To approach these problems, we propose two general, end-
to-end, and explanatory models for network traffic based on
individual sources. By end-to-end, we mean that these models
specify theoretical limiting distributions as Gaussian or alpha-
stable for aggregated traffic based on the characteristics of the
inputs.

We begin by exploring two complementary theories that
show how heavy-tailed inputs can aggregate to either Gaussian
or alpha-stable outputs. The first theory, based on impulse
aggregation under the GCLT, predicts aggregation to alpha-
stable processes when the inputs are heavy-tailed, IID, and
have power-indices (i.e., tail decay values) less than 2. The
second theory, grounded in renewal process theory of Taqqu
and Levy, predicts alpha-stable aggregation based on the
population ratios of heavy-tailed IID inputs.

We then develop two models, impulse and renewal, based
on these theories and provide preliminary evaluations of their
accuracy in replicating 4 unique datasets from networks of
varying size and device populations. Finally, we perform
preliminary evaluations of our proposed models to validate
this theoretical approach and evaluate their ability to reproduce

LRD.
The remainder of this work is organized as follows: Section

2 describes datasets, background theory, and prior work. Sec-
tion 3 validates foundational IID and ergodicity assumptions,
then describes the theory of the impulse model. Section 4
contains the renewal model, Section 5 describes our simulation
process and assessment results, and conclusions and future
work items are contained in Section 6.

II. BACKGROUND AND PRIOR WORK

A. Datasets used in this work

To provide a rigorous comparison using real-world network
traffic, this work used network traffic data (i.e., traces) from
three different sources; these sources roughly fall into a
three different categories of typical traffic. The traces and
some specific attributes are summarized in Table I, where the
average traffic rate of each trace is given in gigabits per second.

Table I
NETWORK TRAFFIC SOURCES

Name Type Rate ID Source
[Gbps]

WAND Residential DSL 0.065 20090106-04 [10]
NPS Academic Campus 1.1 2019Jul01 -

MAWI Nov Backbone 0.43 2017Nov11 [11]
MAWI Apr Backbone 0.46 2016Apr28 [11]

The WAND data is a capture of residential traffic from
a New Zealand internet service provider [10]; this dataset
was selected for its low rate and anticipated homogeneity of
traffic. The Naval Postgraduate School (NPS) trace is a capture
of inbound traffic to a relatively small campus network; on
a typical day the number of active devices is in the low
thousands, but device and process diversity is expected to be
greater than that of the WAND trace due to the mix of student
and professional services. The most diverse traces are expected
to be the MAWI traces, as these are captures of bi-directional
Internet traffic between Japan and the United States [11].

The WAND and MAWI traces are publicly-available; as of
the time of publication, we are working to make the NPS
traces used in this work available as well via the authors’ NPS
website. Due to space constraints and further descriptions of
the WAND and MAWI datasets available in existing literature,
we will now provide background on alpha-stable (i.e., stable,
Lévy stable, or Pareto-stable) processes and their relationship
to the properties of SS and LRD.

B. Alpha-Stable Processes

By considering the definitions of alpha-stable processes and
their sources, we can develop intuition regarding the types of
inputs that would aggregate to an alpha-stable result.

Definition II.1. A random variable X is said to have a stable
distribution if, for any positive number A and B, there is a
positive number C and a real number D such that

AX1 +BX2
d
= DX +D (1)



where X1 and X2 are independent copies of X and d
= indicates

equality in the distribution sense.

See [12] for equivalent definitions. A fundamental result is
that A,B,C satisfy Aα +Bα = Cα for some α ∈ (0, 2]. For
a proof see [13]. This alpha is of singular importance in the
theory of stable processes and very relevant to our application
as we will slowly uncover in the progression of the paper.

A definition in terms of the domain of attraction of a
stable process is possible thanks to the GCLT [14]. This
definition is the first indication that alpha stable processes
provide a suitable framework to model network traffic where
many signals aggregate, and it thus becomes fundamental to
our approach to anomaly detection.

Definition II.2. For a a random variable X . We define the
domain of attraction of X , denoted by D(X) to be the set of
random variables Y such that there exists dn > 0, an ∈ R
and

Y1 + Y2 + ...+ Yn
dn

+ an
d→ X (2)

for Y, Y1, ..., Yn IID random variables. The symbol d→ ex-
presses convergence in distribution.

Definition II.3. A random variable X is a stable if D(X) 6= ∅

The set D(X) is characterized in [14]. Explicit expressions
for the distribution of stable processes are unknown except for
the following three classical examples: the Gaussian distribu-
tion where α = 2, the Lévy distribution for α = 1/2, and
the Cauchy distribution where α = 1. However, it is possible
to define stable processes in terms of characteristic functions
using the four parameters of α, β, σ, and µ.

E(eiθX) = exp{−σα|θ|α(1− iβsign(θ)ω(θ, α)) + iµθ} (3)

where

ω(θ, α) =

{
tan(πα2 ) α 6= 1
2
π ln(|θ|) α = 1

and

sign(θ) =


1 θ > 0

0 θ = 0

−1 θ < 0

These formulas were classically obtained through the study
of infinitely divisible processes and their Lévy-Khintchine
representation [9], but other approaches have been discovered
[15].

A quick exploration of this expression reveals the effects of
these parameters [12]: α ∈ (0, 2] characterizes tail size; σ ∈
[0,∞) determines spread; β ∈ [−1, 1] describes skewness;
and µ ∈ R gives location. We write X ∼ Sα(σ, β, µ) if X
has characteristic function given by (3).

Having defined alpha-stable processes, we now link this dis-
tribution to the closely-related property of SS. The manifested

burstiness in network traffic at different scales can be described
with the introduction of the concept of SS. This is the second
indication that stable processes offer the correct framework to
modeling network traffic.

Definition II.4. A process X = {X(t) : t ∈ R} is SS if for
any a > 0, there is b > 0 such that the finite-dimensional
distributions of X are the same as {bX(at) : t ∈ R}

Surprisingly, there is H > 0 such that for each a, b =
a−H . H is called the SS index or Hurst exponent [9]. There
are many methods to approximate H [16]. The original re-
scaled range (R/S) method discovered by Hurst in the context
of hydrology sparked the introduction and study of SS by
Mandelbrot et al. Another noticeable property of traces is long-
range-dependence.

Definition II.5. A second order stationary time series X =
{Xn : n ∈ Z} is long-range dependent (LRD) or is said to
have long memory if the auto-covariance function γ of X is
not absolutely summable, i.e

∞∑
k=−∞

|γ(k)| =∞ (4)

Equivalently, if γ(k) = L(k)k2d−1 where d ∈ (0, 1/2) and
L is a slow varying function at infinity, that is, L is positive
on [c,∞) for some c ≥ 0 and for any a > 0

lim
x→∞

L(ax)

L(x)
= 1

See [17] for other equivalent definitions.
For a second order SS process {Yn : n ∈ Z} with stationary

increments and index 1/2 < H < 1 the process {Xn = Yn −
Yn−1 : n ∈ Z} is LRD with d = H−1/2, see [17] for details.
This fact also reinforces our ongoing support for stable models.

The permissible (α,H) region for non-degenerate α- stable
and SS processes of index H with stationary increments is
described in [12] pg 317.

With the alpha-stable distribution and its relationships to SS
and LRD described, we now examine how the alpha-stable
distribution has been applied in prior work and applies to our
datasets.

C. Prior modeling work

Only a brief overview of key network traffic models is
warranted, as exhaustive discussion is readily available in
the literature, including [6], [18]. Poisson-based models for
aspects of aggregated traffic were shown to be inaccurate in
the mid-1990s [8]. To reflect the observed heavy tails, SS, and
LRD in the network core, numerous models were subsequently
developed using hybrid approaches such fractional ARIMA,
fractional Gaussian, fractional Brownian, and Pareto burst
processes, among others [6], [19]. Work in the related area of
anomaly detection improved detection accuracy using Gamma
and then alpha-stable distributions as traffic models [2], [3].
Our previous work confirmed the alpha-stable detection results
in [3], finding that the heavy tail and four parameters of



alpha-stable distributions most accurately described a variety
of simulated and real datasets, even in the presence of severe
noise in the form of cyber attacks [4].

For this work we decided to evaluate two new datasets
as well as two new MAWI traces. As we began evaluating
the data, we identified that their characteristics mirror the
disagreements in the literature regarding the “best” models:
The packet rates for 3 traces are described by non-Gaussian,
alpha-stable (i.e., heavy-tailed) distributions, while the WAND
trace is nearly Gaussian. This can be seen in Figure 3, which
compares the Gaussian and alpha-stable maximum-likelihood
(ML) fits of per-subwindow packet count for a randomly-
selected 5 s window of each of our four datasets. The stable
fit parameter α and normalized negative log-likelihood value
of the ML fit are given in the figure.

Figure 3. Packet count per subwindow histograms for a randomly-chosen 5
s window of the MAWI Apr, MAWI Nov, NPS, and WAND data sets (listed
from top to bottom). The ML Gaussian and Stable fits are shown by dashed
and solid lines, respectively.

The near-Gaussian fit of the WAND trace is likely due to
its overall low volume (7 impulses per typical subwindow).
At such a low aggregation level, the fat tail is less likely to
significantly affect the distribution in the sense that one is
less likely to sample outliers from the heavy tail (a window is
about 1000 samples). This sampling effect may also affect our
modeling and simulation results in subsequent sections. Note
that, as shown in Figure 6, the tail exponent of the WAND
trace is estimated to be much larger than the other datasets,
and larger tail exponent values predict that the aggregated
distribution will converge to Gaussian.

D. Heavy tails in examined datasets

To apply our impulse and renewal models by approaching
these datasets as aggregations of heavy-tailed impulses, we
must first confirm the heavy-tailed nature of our inputs and
verify this characteristic is persistent. To accomplish this, we
measured the slope of the tail impulse volumes for sub-window
sizes between 1 and 10 ms. We found the slopes to be fairly
invariant with respect to the length of the sub-window, as
shown by the upper plots in Figure 4.
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Figure 4. Plots of tail slope values (top) and fit sensitivity (bottom) to sub-
window size for MAWI Apr, MAWI Nov, NPS, and WAND data sets (top to
bottom).

These plots asses the consistency of the tail-size slope and
quality of Pareto fit (as given by Kolmogorov-Smirnov (K-S)
distance) for a randomly-chosen 1 s window from each trace.
Note that, the WAND network is more sensitive to sub-window
size due to the network’s small size and limited variety of
inputs, as previously discussed.

As part of this analysis, we observed that trace fits tend
towards Gaussian (i.e., α → 2 at large sub-windows (e.g.,
30 ms or more). In contrast, changing window size had little
effect on fits, thus increasing the size of the window should
only improve the fit of our model due to the increased number
of aggregation samples.

For a fixed window, gradually increasing the sub-window
size effectively increases the magnitude of impulses belonging
to packet flows that were previously segregated into a different
sub-window, introducing new impulses to the aggregation. The
increase of sub-window size could also be understood as a re-
scaling and studied using a self-similarity mindset. In practice,
larger sub-windows can lead to decreased variation in the
aggregations and smaller populations of samples. We note that
this sub-window size dependency, if consistent across other
datasets, may lead to (possibly) inappropriate conclusions of
Gaussianity and the application of statistical measures such as
mean that are not appropriate for heavy-tailed distributions.

Having characterized our dataset inputs, we will now pro-
pose an impulse aggregation model for heavy-tailed data.

III. THE IMPULSE MODEL

The goal of this simple model is to explain the self-
similarity tendency of network traffic by describing the ag-



gregation of packets inside the sub-windows. We will define
an impulse as a group of time stamps (packets) within a sub-
window that are related by a unique source IP and destination
IP pair (IP0, IP1).

For a given window size (e.g., 5 s) we can characterize a
trace based on the impulses in each sub-window (typically on
the order of 5 ms). Impulses are ordered in such a way that
P(Yi = a) does not depend on i, where Yi is the volume of
the ith impulse. The total volume of traffic in a sub-window
is given by the sum of the impulses within it, the number of
which is described by a distribution E.

We expect the center of this distribution to shift in the
positive direction as the size and complexity of the network
increases, while the variance should stay bounded. In other
words, the distribution of the volumes of all impulses Yi and
should have comparable tail decay for similar networks. We
can get a sense of the complexity of our network datasets by
counting the instances of each process in each subwindow,
defined as impulses with a unique {IPsource, IPdestination} pair.
These results are shown in Figure 5. The results in Figure 6,
a plot of the packet counts per sub-window for each of our
four datasets on a log-log plot, confirm our expectations; even
as network size increases between the NPS and MAWI traces,
the variance (e.g., tail slopes) remains equivalent.
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Figure 5. Process count per 5 ms sub-window plotted over a randomly-
selected one second interval for four different networks.

The aggregation of traffic for a generic sub-window is then
expressed by

S = Y1 + Y2 + ...+ Ye (5)

where e is sampled from E.

A. Verifying assumptions: Independence and identical distri-
bution

The IID assumption is critical to aggregation using the
GCLT and renewal theory; we will first evaluate this assump-
tion with respect to our data.

The independence assumption of processes and their im-
pulses Yi within a sub-window can be assumed to be in-
dependent. This is a reasonable assumption based on the
diversity of communicating devices and processes in larger
networks, particularly when further randomized by user action
and network effects.
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Figure 6. PDF of packet count per 5 ms sub-window on a log-log scale. The
distributions are constructed from one second windows from each capture.
The linearity of the plots suggests a power law distribution with estimated
PDF tail slopes of 1.31, 1.40 and 1.40 for the NPS, MAWI Nov, and MAWI
Apr data sets respectively. Note that the WAND slope is not estimated due to
its variability.

The common distribution of impulses Yi is given by V ;
these impulses must be ID. While a given activity may not
necessarily ID across devices over a long period of time,
this assumption is more plausible if we restrict ourselves to
relatively short windows (e.g., over a window with length
shorter than a typical video). For instance, the YouTube
communication in Figure 2 looks fairly ID across several 5
s windows.

We can also quantitatively estimate the strength of our
ID assumption. To evaluate impulse distribution for each of
our four traces, we randomly selected two different indices
i in 1 ms sub-windows. For each sub-window over 800 s
of data, we then counted the impulses associated with these
indices and compared their histograms using a Kolmogorov-
Smirnov (K-S) test. Based on the observed small K-S distances
between randomly-selected indices observed in Figure 7, the
ID assumption is justified.
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Figure 7. Plot of K-S distance between actual and randomized impulse volume
distributions for each of our datasets.

Now that we have established the IID and heavy-tailed
nature of our input processes, we can examine how they
aggregate to alpha-stable (or Gaussian) network traffic.



B. Impulse aggregation

It is well documented in the literature that V can frequently
be accurately approximated by heavy-tailed functions belong-
ing to the domain of attraction of alpha stable distributions
[7]. Heavy-tailed processes are also evident in three of our
four traces, as shown in Figure 6. Heavy-tailed inputs are
known to aggregate to stable distributions in accordance with
the following theorem.

Theorem III.1. Let Y1, ..., Yn be IID with cumulative distri-
bution F . Then Y1 ∈ D(X) with X ∼ Sα(1, β, 0) if and only
if

i) xα[1− F (x) + F (−x)] = L(x) is slowly varying at infinity

ii)
F (−x)

1 + F (−x) + F (−x)
→ 1− β

2
as x→∞

(6)

In terms of Definition II.2, dn = n1/αL0(n), where L0(n)
is a slow varying function at infinity. (See [12] for explicit
conditions on dn and bn.) In this application, where F (−x) =
0 for x > 0, condition i) reduces to what we will refer to as
fat right tail or simply heavy tail.

Given that we have established IID and heavy-tailed inputs,
the asymptotic behavior of the aggregation in (5) can now
be studied using the GCLT. Specifically, we can estimate the
convergence rate under the stronger assumption that Y1 lies in
the strong domain of attraction of a stable distribution [20].

Convergence rate estimates in terms of the Mallows distance
are given in [21].

The convergence rate permits evaluating tolerable errors
in the stable fits used in modeling and anomaly detection.
Note that classical analysis using higher-order moments is
unavailable for non-Gaussian alpha-stable distributions [22];
alternatively, convergence can be studied via truncated mo-
ments [23], log-statistics [24], or fractional moments [25].
Further investigation of convergence rate and sensitivity to
input populations are items for continuing work.

C. From sub-windows to aggregated traffic at the window
level: Ergodicity

The sub-window aggregation model can provide informa-
tion about the distribution of a generic window under the
assumption of ergodicity of the trace. Consistent with many
models in the literature, our proposed models rely on assump-
tions regarding ergodicity of the sub-window aggregations (or
impulse superposition) as a discrete stochastic process; in this
section we evaluate that assumption empirically.

Intuitively, we think of a window as a set of consecutive
samples of sub-windows (typically between 600 and 1000).
The distribution of the aggregation of the random variables
defined above determines the outcome of randomly selecting
sub-windows within a stationary trace. We can assume station-
arity based on data windows and trace lengths in this work
being shorter than empirical thresholds in the literature [3],
[8], but a condition stronger than stationarity is required to
determine the distribution of the aggregated result.

When interpreted as a Bernoulli scheme (permissible by
the sub-window based modeling and the discrete volume vari-
ables) the model inherits the ergodic property which implies
that the distribution of a large enough window approximates
the sample distribution of the aggregation (5), the appropriate-
ness of this assumption can be evaluated qualitatively using
Figure 8.
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Figure 8. Qualitative evaluation of ergodicity through comparison of the
distributions of measured and generated packet rates during a 30 second period
of traffic for the Mawi Apr, Mawi Nov, NPS, and WAND traces (top to
bottom).

Figure 8 compares the distribution of sampled to generated
traffic sub-windows for 30 second portions of our four traces.
The left-side histograms represent the packet rate density for
2,000 consecutive 5 ms sub-windows, while the right-side
histograms were obtained by sampling 10,000 sub-windows
at random (with overlap permitted).

The relative equivalence between the left and right figures
demonstrates that the Bernoulli basis for ergodicity can be
supported, and justifies application of the impulsive model the-
ory to our datasets. The celebrated Ergodic Theory has many
applications in the fields of Dynamical Systems, Stochatic
Processes, Number Theory and many others. We refer the
interested reader to [26] for a formal introduction to the
subject.

IV. THE RENEWAL PROCESS MODEL

In this section, we interpret traffic as renewal processes
whose aggregation is studied by Taqqu and Lévy in [27].
Specifically, they look at processes of the form

X∗(T,M) =

T∑
t=1

M∑
m=1

Xm,t (7)

where for each t, the random variables Xm,t : 1 ≤ m ≤ M
are IID copies of a renewal process. Two such processes
are considered and the asymptotic behavior of X∗(T,M)
is explored. They discovered that for one of the considered
processes, the accumulation X∗(T,M) approaches a Gaussian
fractional Brownian motion when T << M , and a stable



process when T >> M . See [27] for a quick note on how
these two SS processes differ.

A. Adaptation to the network traffic case

This venue of modeling SS was first proposed by Man-
delbrot. In this paper, we simply offer an implementation of
the processes in [27] with possible physical interpretations of
their T,M parameters. The predictions made in that paper are
empirically supported.

For a given 1 ≤ t ≤ T , we think of the {Xm,t : 1 ≤ m ≤
M} as a set of similar processes (say YouTube activity on a
network due to many different users), whereas we interpret
the index t as ranging across different processes or network
activities in the distribution sense.

B. The impact of ON and OFF times

For each k ≥ 0 we think of Wk as an independent copy of
the random variable of number of packets over time rates with
common distribution R, which we now assume to be truncated
(Wk are assumed to posses finite second moments). Uk rep-
resents an independent copy of the packet flow duration with
distribution U (the ON durations) and similarly Fk denotes
the OFF period duration with distribution F . The variables
Fk are absent in Taqqu’s and Levy’s considerations but it will
promptly be clear that their results are still applicable. Uk
will be assumed to satisfy the same conditions as in [27],
namely they are IID and have finite variance or belong to the
domain of attraction of a stable distribution with 1 ≤ α ≤ 2.
These conditions are also extended to Fk. In addition, Wk

is independent of Uk and Fk. Figure 9 shows how activity
and inactivity periods are shadowed by power decaying distri-
butions for a considerably long period of time; nevertheless,
a sharp deviation from this trend is clearly expected at some
point. This truncation imposed by physical constraints appears
to fall under the term soft truncation introduced in [23].

10−2 10−1 100

Duration (seconds)

10−3

10−2

10−1

100

101

102

Fre
qu

en
cy

Activity Periods
Inactivity Periods

Figure 9. Plotted above are the probability distributions of packet flow
duration and the interruption periods between packet flows related to the same
process.

In order to compute the ON durations, we first define a
packet flow as a string of packets related by (IP0, IP1) possibly
extending over several sub-windows (i.e a consecutive group
of impulses). Two packets belong to the same flow if they are

less than one sub-window apart. We also define the random
variables Sk and Ek given by

Sk = S0 +

k−1∑
j=0

Uj +

k−1∑
j=0

Fj k ≥ 1

Ek = Sk + Uk k ≥ 0

(8)

representing the start-time and end-time of a packet flow
respectively, analogously to [27]. Ik = (Sk, Ek] denotes the
kth ON interval.

Finally, we define the random variables

δk =

{
1 wk ∩ (

⋃
Ij) 6= ∅

0 otherwise

where wk refers to the kth sub-window in the trace.
A signal is now expressed as Xt =

∑∞
k=0Wkδk and

we interpret the expression
∑T
t=1Xt as the superposition of

the volume of several impulses at a sub-window under the
assumption of stationarity.

The sum of m copies of X(t) in a given sub-window
suggests the traffic of m ”similar” processes. We expect that
the relation T >> M is satisfied in large networks and in
traces captured at busy nodes due to the increased effect of
perturbations and noise.

In this case, the finite distribution of

X∗([Ty],M)

(MT )−1/αL(T )

converges to an α-stable process when T →∞ first and then
M →∞. L again denotes a slow varying function at infinity,
α ∈ (1, 2) and y ∈ [0, 1]. See [27] for the complete theorem
including the reverse order of the limits and the convergence
to fractional Brownian motion.

V. MODEL VALIDATION

In this section we show how these simple models capture
some of the main properties of real network traffic. One of
our goals was to describe traffic in the following way:

Real Traffic(x1, ...xL)
d
= Toy Model1(V,E) + error1

d
= Toy Model2(T,M,U, F ) + error2

where both error1 and error1 go to zero asymptotically, while
the models are as simple as possible but can still capture the
main features of network traffic. Notice that the above models
are very much related; and in fact, we think of them in terms
of the relation

Toy Model2(T,M,U, F )
d
= Toy Model1(V,E) + error(U,F )

Their asymptotic convergence is demonstrated in Figure 13
and will be discussed in more detail later in this section.

Model 2 is strongly related to the M/G/∞ construction due
of Cox in the sense that similar conditions are assumed for the
ON/OFF durations; however, our method does not assume that
the volumes are heavy-tailed and or that the packets arrival
rates is constant. See [28].



A. Model description

The predicting power of both models lie on their foun-
dations on asymptotic results. By understanding the limiting
behavior of the aggregation and the convergence rate in a
given metric, it is possible to compute an upper bound on the
observed error at a fixed aggregation with serves as a tolerance
level in the anomaly detection phase.

These traffic descriptions can then be used to model traffic
by following the process described in Algorithm 1. Note that
this algorithm describes the renewal process-based model and
is straightforward to modify for the impulse-based model.

Result: Catalog signal impulses from dataset
for each sub-window ∈ window ∈ dataset do

get timestamp and packet count of each
{Source IP, Destination IP} pair;

end
// Determines average number of unique

signals over all windows (N), a
placeholder for M and T in the
current simplified simulation.

Result: get ON and OFF durations from a signal
for each window ∈ dataset do

record length of consecutive packets (packet flow)
and length of consecutive null packet count

end
Result: Generate a sample signal
while position is not the last subwindow do

sample ON durations;
sample OFF durations;
sample a corresponding number of volumes and

assign to subwindows
position = position + ON + OFF

end
Result: Generate renewal process-based traffic model
for i = 1 : N do

generate a signal
aggregate signal to trace

end
Algorithm 1: Simplified renewal processes-based traffic
model algorithm.

We note that the major intended contributions of this work
are complete at this point: We have established a causal
theoretical connection between heavy-tailed process inputs
and SS and LRD that can result in Gaussian or alpha-stable
aggregated network traffic, depending on specific conditions of
the inputs. Grounded in this theory, we have also outlined two
complementary models that utilize the observations of heavy-
tailed and explain the alpha-stable marginal distributions of
certain features of aggregated, large-network traffic.

Refinement of the model implementations and their outputs
remains a work in progress, but we can present initial results
that support our overall methodology.

B. Model assessment

As a preliminary check, we can assess the quality of the
simulated traces generated by our two models both in terms
of visual similarity to the parent trace and in terms of their
ability to manifest LRD. The parent trace for this validation,
shown in Figure 10, is a plot of packet count per sub-window
for a randomly-chosen 5 s window of the MAWI 2017Nov11
trace.
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Figure 10. 5s of the MAWI Nov 11 trace

Due to space constraints, we only present the results for
the renewal model. We note that this model presents slightly
better visual results, but the autocorrelation and power spectral
density analyses results are essentially identical.

The renewal model’s reconstruction of the parent trace is
shown in Figure 11. The renewal model provides slightly more
fidelity, both in terms of variation and aperiodicity, than the
impulse model and thus gives a better appearance of self-
similarity.
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Figure 11. Generated packet rate over time of the simplified renewal processes
model using only a historical distribution of ON durations for 5 s of the MAWI
11 Nov trace.

Both models do not possess the same magnitudes of aperi-
odic short-term volume displacement evident in parent trace.
This is potentially the result of only using 5 s of parent trace
data. These results are still promising, particularly given that
this plot was generated using the simplified renewal model,
still in development, that does not incorporate OFF periodicity.



Also, incorporating more than 5 s of process history into the
model library may increase accuracy. These are both items of
future work.

The autocorrelation results of the impulsive model are en-
couraging (but not shown); there is slow variation at increasing
lags consistent with existing literature evaluations of heavy-
tailed traces exhibiting LRD [29].

We can assess the ability of the renewal model to reproduce
LRD by examining the model’s power spectral density; this is
shown in Figure 12.
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Figure 12. Power spectral density plot of the renewal processes model for
five minutes of data.

LRD, consistent across both models, is implied by the non-
zero asymptotic result at high lag. Figure 12 was produced
from a generated 5 minutes of trace. We note that the initial
rate of spectral decay is higher than expected and that the tail
decay appears to be smaller than expected; these results are
attributed to the in-progress model and will be re-examined as
part of future work.

Finally, it is important to assess the flexibility of our
modeling method by comparing generated and parent traces
across all datasets. These results are summarized in Figure 13,
which shows the K-S distance between the CDFs of the trace
impulses of the parent traces (given by solid lines) and the
model-generated traces (given by dashed lines) for the impulse
model only.

To create Figure 13, we first selected a random 5 s window
from the parent trace and applied the Catalog impulses step of
Algorithm 1 to determine the distribution of impulse volumes.
For each respective capture, these volumes were randomly
divided into sub-windows with 212, 167, 40, and 7 impulses
in each sub-window; impulse counts were determined by the
mean number of impulses per sub-window in a one-second
period for each trace. Finally the volumes of these impulses
were summed for each sub-window to provide a distribution
of packet count per sub-window for the overall window. The
impulse distribution for the parent and generated traces were
then compared to determine the K-S distances shown in the
figure.

To explain this observation in terms of the renewal process
description, we first notice that WAND was obtained from a
residential network. For such a trace, the sample distribution
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Figure 13. Solid lines indicate the cdfs of packet count per 5 ms across
randomly chosen 5s windows for the MAWI APR, MAWI Nov, NPS, and
WAND data sets (listed from top to bottom). Dotted lines indicate the
simulated distributions, which were generated in the following manner.

of impulse volumes is sparse while the number of similar
processes appearing in the network is comparably high (es-
timations of T and M for several networks will be included
in future work), under these assumptions we anticipate the
relation T << M which [27] assures converges to Gaussian
fractional Brownian motion.

We note that the comparison for the renewal model is not
shown (again due to space); the results are similar and K-
S distances are 0.054, 0.078, 0.17, and 0.522, respectively.
Model performance improves in terms of K-S distance as the
observed process count increases; it is intuitive that a better
sample population improves the accuracy of the model. The
tail accuracy of the model is significant, however, as many
existing traffic models suffer in this region. Sensitivity of
modeling accuracy to input population and the nature of trace
activity (e.g., heavy hitters, mice, etc.) is an item of future
work.

VI. CONCLUSIONS

This work establishes conditions for the alpha-stable aggre-
gation of network traffic from individual device processes in
larger networks. The alpha-stable distribution is closely tied
to SS and LRD.

At many scales, process traffic can be characterized as
impulses defined by large variations in amplitude with small
on- and large off-periods. A model consisting of a small
subset of these impulsive processes observed on a typical,
centrally-managed campus network was created; the individual
processes were found to rapidly aggregate, creating alpha-
stable distributed network traffic.

The results of this model empirically validate the proposed
two complementary, theoretical aggregation mechanisms re-
sulting in alpha-stable distributed traffic: Renewal processes
and impulsive processes leading to self-similarity. These two
models show how features of network traffic can tend to ex-
hibit Gaussian characteristics in small networks while growing



heavy-tailed in larger networks (i.e., campus-sized or greater).
This result also provides an alternative explanation for the
SS and LRD traffic characteristics observed in large-volume
traces.

We note that should alpha-stable distributions of network
traffic become more widely observed and accepted, a re-
examination of traffic measurement conventions may be war-
ranted. Alpha-stable distributions lack higher-order moments,
implying that methods using measures such as standard devi-
ation, variance, power (and in some cases, mean) should be
exchanged for those reflecting the nature of the traffic. The
gain in performance from using appropriate measures in the
presence of alpha-stable distributions is well documented [24],
[25].

Items for future work include both extending the breadth
of granularity of our aggregation models, more rigorously
assessing the assumptions inherent to applying these models,
and ultimately applying these findings to improve existing
alpha-stable based network anomaly detectors. Processes from
personal devices such as laptops and mobile phones can be
characterized and added to our models, which would permit
extending these results to wireless networks. These process
aggregation models can be further enhanced by incorporating
processes of typical network attacks (e.g., denial-of-service);
this should provide a forecasting mechanism to differentiate
normal from anomalous conditions. Ultimately, by identi-
fying when network traffic features should be alpha-stable
distributed and the effects of a variety of network attacks,
distribution-appropriate anomaly detection algorithms can be
deployed that more accurately reflect the actual, observed
traffic characteristics with reduced false positive rates.
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