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Abstract

Normally hyperbolic invariant manifolds theory provides an efficient tool for proving diffusion
in dynamical systems. In this paper we develop a methodology for computer assisted proofs of
diffusion in a-priori chaotic systems based on this approach. We devise a method, which allows
us to validate the needed conditions in a finite number of steps, which can be performed by a
computer by means of rigorous-interval-arithmetic computations. We apply our method to the
generalized standard map, obtaining diffusion over an explicit range of actions.
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1. Introduction

The influence of Celestial Mechanics on the evolution of dynamical systems theory cannot
be overstated. The latter originated in Newton’s Principia, where were formulated and solved
the differential equations governing the motion of two planets. In modern terminology, Newton
showed that the two body problem is “completely integrable”: that is, there are enough conserved
quantities so that all solutions are obtained by taking intersections of their level sets. In the two
body case this results in the conic sections.

The Newtonian n-body problem for n ≥ 3 is far more complicated, and for several generations
it was unclear whether the notion of integrability was sufficient for describing the behavior of
more general gravitating systems. Interest in the problem led to the development of perturbation
theory in the works of prominent mathematicians like Euler, Lagrange, Laplace, Gauss, and
Hamilton during the next two centuries, and to the introduction of both the Lagrangian and
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Hamiltonian formulations of mechanics. However, the “only” problem studied during this period
was to compute with extreme precision the trajectories of (some of) the planets in the solar
system, taking into account mutual interactions between them.

The work of Poincaré at the end of the 19th century revolutionized the theory, and the funda-
mental questions changed in several dramatic ways.

• Instead of looking at individual solutions of a given system, Poincaré realized that consid-
ering the evolution of all initial conditions enables one to use (or create new) geometric
tools adapted to this setting.

• Instead of looking at the evolution of a trajectory over a finite time interval, he realized
that understanding the asymptotic behavior of certain special orbits as time goes to infinity
yields useful information.

As an example, recall that Poincaré used the geometry of certain infinitely long homoclinic orbits
to establish that the (restricted) three body problem is not integrable, simultaneously shattering
the notion that integrability was sufficient for the study of all dynamics and establishing the
existence of complex phenomena never before imagined. Another stunning example where both
ideas are fully exploited is the celebrated “Poincaré recurrence theorem”, which uses measure
(probability) theory on the geometric side, and which would have been totally unreachable by
any study only focusing on the evolution of single trajectories. The impressive ensemble of
ideas introduced and developed by Poincaré is nowadays considered to be the very cornerstone
of dynamical systems theory.

Stability remained a major concern in the new theory, and a central problem was to un-
derstand perturbations of completely integrable systems. Indeed the solar system itself can be
viewed as a system of weakly coupled (completely integrable) two body problems, and the ques-
tion of it’s stability has captivated mathematicians since the days of Newton. To formalize the
discussion4, let An = T ∗Tn = Tn×Rn denote the annulus with the angle-action coordinates (θ, r),
endowed with the symplectic form Ω =

∑n
i=1 dri ∧ dθi. Consider a Hamiltonian of the form

H(θ, r) = h(r) + f (θ, r), (1)

where f is small in some suitable function space (analytic, C∞, Cκ, etcetera). The Hamiltonian
differential equations generated by H read

θ̇i = ∂ri H(θ, r) = ∂ri h(r) + ∂ri f (θ, r)
ṙi = −∂θi H(θ, r) = −∂θi f (θ, r),

and we note that when f ≡ 0, all the orbits move with constant velocity on invariant tori.
When f is small it is apparent that the evolution of the action variables ri are “slow”. The

fact that this evolution is “extremely slow” emerged from the averaging methods originally de-
veloped by Lagrange and Laplace, furthered by Poincaré and Birkhoff, and which culminated in
the work of Littlewood [2] and in the major achievements of Nekhoroshev [3]. Thanks to the
work of these and many subsequent authors it is now well-known that if f is strictly convex and
analytic, then the drift in the action variables cannot exceed a variation of O(ε1/2n) during an
O
(

exp(1/ε)1/2(n−2))-long time, where ε measures the size of the perturbation function f .

4We refer to [1] for a comprehensive presentation of symplectic geometry
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Following another line of research dating back to Poincaré, Kolmogorov [4] proved the first
results on “perpetual stability” of solutions of analytic systems (1). Kolmogorov’s approach is
geometric in essence: he proves that the integrable invariant tori of the form Tn × {r0} persist
and are only slightly deformed when the perturbation f is added to the system, provided that the
frequency vector ∇h(r0) is Diophantine, meaning that there are constants γ > 0 and τ > 0 such
that

|k · ∇h(r0)| ≥
γ

‖k‖τ
, ∀k ∈ Zn \ {0}.

Arnold and Moser then added their own contributions to this initial result, giving rise to what is
now known as the KAM theory [5, 6, 7, 8]. See also [9] for much more complete discussion of
the KAM theory and and it’s development.

Taken together, the KAM and averaging theories provide indispensable information about
the dynamics of perturbations of integrable Hamiltonian systems. The KAM theory tells us that
some orbits remain close to the unperturbed dynamics for all time (the KAM tori), while the
averaging theory says that all orbits stay close to the unperturbed dynamics for exponentially
long times. A natural question is to ask do there exist orbits which move “arbitrarily” far from
the integrable dynamics on a long enough time scale? Indeed, when n ≥ 3, a KAM torus has a
connected complement in a constant energy level, and the existence of the full family of KAM
tori (whose complement has an O(

√
ε) relative measure in this level) does not prevent trajectories

from drifting away from the integrable dynamics on very long timescales.
The first example exhibiting this phenomenon was given by Arnold in [10], and had the

following form:

Hε(θ, r) = r0 + 1
2 (r2

1 + r2
2) + µ cos θ2 + εg(θ, r), θ ∈ T3, r ∈ R3, (2)

where g is an explicit fixed trigonometric polynomial, with µ and ε independent parameters.
The example has several important special properties, which we state here for a general analytic
function g.

• When µ = ε = 0, the system reduces to h and is completely integrable in angle-action
form.

• When µ > 0 and ε = 0, the system H0 is Liouville-integrable. In particular, it admits a
normally hyperbolic (and symplectic) invariant annulusA0 = A2×{O}, where O = (0, 0) ∈
A is the hyperbolic fixed point of the pendulum 1

2 r2
2 + µ cos θ2. The stable and unstable

manifolds ofA0 take the form W±(A0) = A2×W±(O). The Hamiltonian flow in restriction
toA0 is completely integrable, in the sense that it admits a foliation by the Lagrangian (for
the induced structure) invariant tori

(
T2 × {(r0, r1)}

)
(r0,r1)∈R2 .

• For fixed µ and small enough (ε has to be exponentially small w.r.t. µ in Arnold’s exam-
ple), the annulus A0 is only slightly deformed and gives rise to a 4-dimensional normally
hyperbolic (symplectic) invariant annulusAε close toA0, with a rich homoclinic structure,
while the Hamiltonian flow onAε is close to completely integrable.

It is important to stress that the perturbation g is carefully chosen in Arnold’s example, so
that the annulusA0 is still invariant when ε > 0. By exploiting this fact Arnold was able to show
that for µ, ε > 0 small enough Hε admits a solution γε(t) =

(
θ(t), r(t)

)
which drifts of order 1 in

action for suitable (very large) Tµ,ε. That is

r1(0) < 0, r1(Tε) > 1,
3



for this orbit. This provided an explicit example where orbits of the perturbed system “diffuse”
as far and as fast5 from the integrable dynamics as allowed by averaging theory.

The use of two independent parameters (a method originally introduced by Poincaré) in
Arnold’s example simplifies a lot the study: (2) is to be compared with (1), where the size of
f is the only available parameter. Nevertheless, Arnold’s example became a jumping off point
for a large body of work. By now this is a thriving industry and it is known that diffusion occurs
under a wide variety of hypotheses.

Another (deeper) question raised by Arnold is the case where the parturbed Hamiltonian is
completely integrable and in action-angle form (the famous “fundamental problem of dynamics”
of Poincaré). Given a Hamiltonian system h which depends only on the actions, does there exist
a large (residual) set of perturbations g such that orbits diffuse in the previous fashion - or even
visit any prescribed collection of open subsets of an energy level? It turns out that this question
is extremely delicate, and there are still many important open problems in this active area of
research. The present discussion is by no means intended as a literature review of the field, we
refer to [15] for a very nice result in any dimension, together with relevant references.

We consider another line of study, which comes from weakening the hypothesis that the un-
perturbed system is completely integrable. Consider for example systems of the form (2), in
which the parameter µ is fixed but not small (say µ = 1). Such systems are referred to as a priori
unstable, since they already admit hyperbolic invariant objects when ε = 0. The main difficulty in
studying a priori unstable systems is their “singular character” or lack of transversality, coming
from the fact that the manifolds W±(A0) coincide when ε = 0. Detecting homoclinic intersec-
tions in such systems for generic g when ε , 0 is far from trivial and requires new ingredients
from variational methods, weak KAM theory (both in the convex case) or symplectic topology
in the general case.

This complication motivated the introduction of a still less degenerate class of examples, for
which W±(A0) transversely intersect even in the case ε = 0. This class of systems is known
as a priori chaotic (see [16] and [17] for examples in this category closely related to Arnold’s).
Studying such systems is simpler, which leaves open the possibility of asking new and more
quantitative questions, e.g. what is the threshold in ε under which diffusion phenomenons can
appear, or, what is the maximal length of diffusive trajectories? These questions require new
methods, and this is the main concern of the present work. It turns out that in realistic physical
systems the relevant quantities to estimate are difficult to compute, and our aim is to provide
an explicit example illustrating the relevance of computer-assisted methods of proof in such
problems.

In order to simplify the construction we shift our focus to symplectic maps instead of Hamil-
tonian vector fields. Such a reduction is natural, since taking a Poincaré section in an energy
manifold results in a symplectic diffeomorphism. The main example of the paper is the family
of symplectic diffeomorphisms fε : R2 × T2 → R2 × T2 defined by

fε (x, y, θ, I) =


x + y + α sin (x)
y + α sin (x)
θ + I
I

 + ε


cos(x) sin(θ)
cos(x) sin(θ)
sin(x) cos(θ)
sin(x) cos(θ)

 (3)

5The fact that the speed of Arnold diffusion coincides with the prediction of averaging theory was indeed proved
much later, see [11, 12, 13, 14]
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where (x, y) ∈ R2 and (θ, I) ∈ T2. Observe that the map fε can be seen as a perturbation of
a standard map (variables (x, y)) coupled to an I-parametrized rotation on T2 (variables (θ, I)).
Indeed, when ε = 0 the two systems do not interact and the dynamics is a product.

Of particular interest, the standard map has a hyperbolic fixed point at the origin O in R2. In
the present work we do not treat α as a perturbation parameter, and will show that for some fixed
α the stable and unstable manifolds intersect transversely at some point P (so that the parameter
α plays the role of µ in Arnold’s example). Consequently, f0 admits an invariant torus {O} ×
T2, which is readily seen to be normally hyperbolic, and whose stable and unstable manifolds
intersect transversely along a homoclinic torus {P} ×T2. By the Birkhoff-Smale theorem, a large
enough iterate of the standard map admits a horseshoe (homeomorphic to {0, 1}Z endowed with
the product topology) near the origin. Consequently, for N large enough, the coupling f N

0 admits
a fibered horseshoe, close to {0} × T2 and homeomorphic to {0, 1}Z × T2, on which it induces a
fiber-preserving dynamics. This problem was formalized in [18].

-8
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Figure 1: Phase space structure of the Chirikov Standard Map when α = 4. Black dots indicate the dynamics of a number
of “typical” orbits. The stable and unstable manifolds of the fixed point at the origin are depicted by the red and blue
curves respectively.

When ε > 0, the preservation of the fibers is broken, and nothing prevents the orbits from
drifting along the base T2 in the I direction. In this paper we use constructive computer assisted
arguments to prove that such drift orbits do indeed exist for fε, and that they have lengths in-
dependent of the size ε of the perturbation. This makes the system a significant example in the
a-priori chaotic case. Moreover, the present work provides a self contained exposition of con-
structive computer assisted methods for proving the existence of diffusion phenomena in explicit
examples.

Our results are based on shadowing theorems for scattering maps worked out in [19]. A
scattering map is a function from a normally hyperbolic invariant manifold to itself, defined
through appropriate intersections of fibers of its stable and unstable manifolds. In [19] it is
shown that pseudo orbits resulting from iterations of scattering maps are shadowed by true orbits
of the system. We use this method in our main results, which are contained in Theorems 11,
17, 18 and 19. Theorems 11, 17, 18 establish orbits which diffuse over an explicit interval of
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actions. Theorem 19 establishes orbits which shadow sequences of actions, chosen from the
interval. The aim of this paper is to provide tools which can be used to obtain computer assisted
proofs. To check the hypotheses of our theorems one needs to compute the scattering maps of
the unperturbed system, and to check certain explicit inequalities which measure the influence
of the perturbation on the action. This influence is computed by considering finite fragments
of homoclinic orbits. We show two computer-assisted methods with which the scattering map
can be computed: by using cones or the parameterization method. We apply our results to give
a computer-assisted proof of diffusion for the system given by Equation (3). In a forthcoming
paper we plan an application to the Planar Restricted Three Body Problem, with mass parameters
of the Jupiter-Sun system.

An alternative approach for computer assisted proof of diffusion is given in [20]. This work is
based on the method of correctly aligned windows. The difference compared to this paper is that
[20] requires an explicit construction of ‘connecting sequences’ of windows. These windows are
then used for shadowing arguments. Here we establish transversal intersections of stable/unstable
manifolds leading to scattering maps, and check our conditions along homoclinic orbits. The
shadowing is automatically ensured by [19].

The remainder of the paper is organized as follows. In Section 2 we review some preliminary
information about normally hyperbolic invariant manifolds, scattering maps, and the interval
Newton method. In Section 3 we lay out our main theoretical results, namely the constructive
hypothesis which are used to establish Arnold diffusion in explicit examples. Section 4 applies
the method to the example system. Section 5 is a technical treatment of constructive methods for
studying the stable/unstable manifolds fo fixed points of maps. Proofs of some of the theorems
and lemmas are relegated to the Appendices.

2. Preliminaries

Throughout the paper, for x ∈ Rn, by ‖x‖ we shall mean the Euclidean norm. We use T =

R/mod 2π, to stand for a one dimensional torus and Tk to stand for a k-dimensional torus. For a
set A in a topological space we shall write A to denote its closure.

2.1. Normally hyperbolic invariant manifolds
In this section we recall the notion of a normally hyperbolic invariant manifold and state

the main result concerning its persistence under small perturbation. A classic reference for this
material is [21].

Definition 1. Let Λ ⊂ Rn be a compact manifold without boundary, invariant under f : Rn →

Rn, i.e., f (Λ) = Λ, where f is a Cr-diffeomorphism, r ≥ 1. We say that Λ is a normally hyperbolic
invariant manifold (with symmetric rates) if there exists a constant C > 0, rates 0 < λ < µ−1 < 1
and a T f invariant splitting for every x ∈ Λ

Rn = Eu
x ⊕ E s

x ⊕ TxΛ

such that

v ∈ Eu
x ⇔

∥∥∥D f k(x)v
∥∥∥ ≤ Cλ−k ‖v‖ , k ≤ 0, (4)

v ∈ E s
x ⇔

∥∥∥D f k(x)v
∥∥∥ ≤ Cλk ‖v‖ , k ≥ 0, (5)

v ∈ TxΛ⇒
∥∥∥D f k(x)v

∥∥∥ ≤ Cµ|k| ‖v‖ , k ∈ Z. (6)
6



Let d (x,Λ) stand for the distance between a point x and the manifold Λ, induced by the
Euclidean norm. Given a normally hyperbolic invariant manifold and a suitable small tubular
neighbourhood U ⊂ Rn of Λ one defines its local unstable and local stable manifold [21] as

Wu
Λ ( f ,U) =

{
y ∈ Rn | f k(y) ∈ U, d

(
f k(y),Λ

)
≤ Cyλ

|k|, k ≤ 0
}
,

W s
Λ ( f ,U) =

{
y ∈ Rn | f k(y) ∈ U, d

(
f k(y),Λ

)
≤ Cyλ

k, k ≥ 0
}
,

where Cy is a positive constant, which can depend on y. We define the (global) unstable and
stable manifolds as

Wu
Λ ( f ) =

⋃
n≥0

f n
(
Wu

Λ ( f ,U)
)
, W s

Λ ( f ) =
⋃
n≥0

f −n
(
W s

Λ ( f ,U)
)
.

The manifolds Wu
Λ

( f ,U), W s
Λ

( f ,U), Wu
Λ

( f ) and W s
Λ

( f ) are foliated by

Wu
x ( f ,U) =

{
y ∈ Rn | f k(y) ∈ U, d( f k(y), f k(x)) ≤ Cx,yλ

|k|, k ≤ 0
}
,

W s
x ( f ,U) =

{
y ∈ Rn | f k(y) ∈ U, d( f k(y), f k(x)) ≤ Cx,yλ

k, k ≥ 0
}
,

where x ∈ Λ and Cx,y is a positive constant, which can depend on x and y,

Wu
x ( f ) =

⋃
n≥0

f n
(
Wu

f −n(x) ( f ,U)
)
, W s

x ( f ) =
⋃
n≥0

f −n
(
W s

f n(x) ( f ,U)
)
.

Let

l < min
{

r,
| log λ|
log µ

}
. (7)

The manifold Λ is Cl smooth, the manifolds Wu
Λ

( f ) ,W s
Λ

( f ) are Cl−1 and Wu
x ( f ), W s

x ( f ) are Cr

[22]. Normally hyperbolic manifolds, as well as their stable and unstable manifolds and their
fibres persist under small perturbations [21].

Lemma 2. [22] In the case that the map f preserves a symplectic form ω, the induced form ω|Λ
is a symplectic and f |Λ preserves ω|Λ.

2.2. Shadowing of scattering maps

Our diffusion result is based on shadowing lemmas for scattering maps found in [19], which
we now summarize.

Let us assume that Λ is a normally hyperbolic invariant manifold for f , and define two maps,

Ω+ : W s
Λ( f )→ Λ,

Ω− : Wu
Λ ( f )→ Λ,

where Ω+(x) = x+ iff x ∈ W s
x+

( f ), and Ω−(x) = x− iff x ∈ Wu
x− ( f ) . These are referred to as the

wave maps

Definition 3. We say that a manifold Γ ⊂ Wu
Λ

( f ) ∩W s
Λ

( f ) is a homoclinic channel for Λ if the
following conditions hold:

7



(i) for every x ∈ Γ

TxW s
Λ ( f ) ⊕ TxWu

Λ ( f ) = Rn, (8)
TxW s

Λ ( f ) ∩ TxWu
Λ ( f ) = TxΓ, (9)

(ii) the fibres of Λ intersect Γ transversally in the following sense

TxΓ ⊕ TxW s
x+

( f ) = TxW s
Λ ( f ) , (10)

TxΓ ⊕ TxWu
x− ( f ) = TxWu

Λ ( f ) , (11)

for every x ∈ Γ,

(iii) the wave maps (Ω±)|Γ : Γ→ Λ are diffeomorphisms onto their image.

Definition 4. Assume that Γ is a homoclinic channel for Λ and let

ΩΓ
± := (Ω±) |Γ.

We define a scattering map σΓ for the homoclinic channel Γ as

σΓ := ΩΓ
+ ◦

(
ΩΓ
−

)−1
: ΩΓ
− (Γ)→ ΩΓ

+ (Γ) .

We have the following theorem.

Theorem 5. [19] Assume that f : Rn → Rn is a sufficiently smooth map, Λ ⊂ Rn is a normally
hyperbolic invariant manifold with stable and unstable manifolds which intersect transversally
along a homoclinic channel Γ ⊂ Rn, and σ is the scattering map associated to Γ.

Assume that f preserves measure absolutely continuous with respect to the Lebesgue measure
on Λ, and that σ sends positive measure sets to positive measure sets.

Let m1, . . . ,mn ∈ N be a fixed sequence of integers. Let {xi}i=0,...,n be a finite pseudo-orbit in
Λ, that is a sequence of points in Λ of the form

xi+1 = f mi ◦ σΓ (xi) , i = 0, . . . , n − 1, n ≥ 1, (12)

that is contained in some open set U ⊂ Λ with almost every point of U recurrent for f |Λ. (The
points {xi}i=0,...,n do not have to be themselves recurrent.)

Then for every δ > 0 there exists an orbit {zi}i=0,...,n of f in Rn, with zi+1 = f ki (zi) for some
ki > 0, such that d (zi, xi) < δ for all i = 0, . . . , n.

Remark 6. In [19] the statement of the theorem is for pseudo-orbits of the form xi+1 = σΓ (xi).
Here we shadow pseudo-orbits of the form (12), but this is the same result as that from [19] for
the following reason.

The proof of the theorem in [19] is based on a general shadowing lemma [19, Lemma 3.1]
which ensures that given a pseudo-orbits of the form yi+1 = f ki ◦ σΓ ◦ f ni (yi) where the numbers
of iterates ki, ni are big enough, we are able to find an orbit of the form zi+1 = f ki+ni (zi), δ-close
to the pseudo-orbit yi.

The shadowing of a pseudo-orbit xi+1 = σΓ (xi) is proven in [19] by combining [19, Lemma
3.1] with recurrence. First, by using recurrence, a pseudo-orbit of the form yi+1 = f ki ◦σΓ◦ f ni (yi)
is constructed close to the pseudo-orbit xi+1 = σΓ (xi). The ki, ni are chosen to be big enough to

8



apply from [19, Lemma 3.11]. The true orbit, which follows from [19, Lemma 3.11], shadows
the pseudo orbit yi, but since this lies close to xi one obtains the shadowing of the pseudo orbit
xi+1 = σΓ (xi).

The proof of the shadowing of a pseudo-orbit of the form (12) follows from the same construc-
tion: One can use recurrence to construct a pseudo-orbit of the form yi+1 = f ki ◦ σΓ ◦ f ni (yi), so
that yi are close to xi from (12). The lemma [19, Lemma 3.1] ensures that yi can be shadowed by
a true orbit. Since yi is close to the pseudo-orbit xi form (12) we obtain the shadowing of (12) by
a true orbit.

Remark 7. The result can be immediately extended to the case where we have a finite number
of scattering maps σ1, . . . , σL to shadow

xi+1 = f mi ◦ σαi (xi) , i = 0, . . . , n − 1, n ≥ 1,

for two prescribed sequences m1, . . . ,mn ∈ N and α1, . . . , αn ∈ {1, . . . , L}; see [19, Theorem 3.7].

Remark 8. If f is symplectic for a symplectic form ω, Λ is compact and ω|Λ is not degenerate
on Λ then f |Λ is measure-preserving. Hence, by the Poincaré recurrence theorem almost every
point of Λ is recurrent. In such setting in Theorem 5 we can takeU = Λ.

2.3. Interval Newton Method
In our computer assisted proofs we use the following classical result, which allows one to

conclude from the existence of a “good enough” approximate solution that there exists a true
solution to a nonlinear system of equations.

Let F : Rk → Rk be a C1 function and U ⊂ Rk. We shall denote by [DF (U)] the interval
enclosure of a Jacobian matrix on the set U. This means that [DF (U)] is an interval matrix
defined as

[DF (U)] =

{
A ∈ Rk×k |Ai j ∈

[
inf
x∈U

dFi

dx j
(x), sup

x∈U

dFi

dx j
(x)

]
for i, j = 1, . . . , k

}
.

Let A ⊂ Rk×k be an interval matrix. We shall write A−1 to denote an interval matrix, for which if
A ∈ A then A−1 ∈ A−1.

Theorem 9. [23] (Interval Newton method) Let F : Rk → Rk be a C1 function and X =

Πk
i=1[ai, bi] with ai < bi. If [DF (X)] is invertible and there exists an x0 in X such that

N(x0, X) := x0 − [DF (X)]−1 f (x0) ⊂ X,

then there exists a unique point x∗ ∈ X such that F (x∗) = 0.

3. Main results

Let f0, g : R2d × T2 → R2d × T2 and consider the following system

fε (u, s, I, θ) = f0(u, s, I, θ) + εg (u, s, I, θ) ,

where u, s ∈ Rd, θ, I ∈ T. Assume that fε are symplectic maps for a symplectic form ω, assume
that for ε = 0

Λ0 =
{
(0, 0, I, θ) : I, θ ∈ T1

}
' T2

9



is a normally hyperbolic invariant manifold for which ω|Λ0 is non degenerate, and that I is a
constant of motion for the unperturbed system, i.e.

πI f0 (x) = πI x, (13)

for any x ∈ R2d × T2, where πI(u, s, I, θ) = I.
Our objective is to provide conditions under which for any sufficiently small ε > 0 there

exists a point xε and a number of iterates nε for which

πI
(
f nε
ε (xε) − xε

)
> 1. (14)

The coordinates have the following roles. The u, s are the coordinates on unstable and stable
bundles, respectively, of Λ0. The θ is an angle and I plays the role of an constant of motion for
ε = 0. In the setting of action-angle coordinates, the I would be chosen as the action. We shall
refer to I as an ‘action’, slightly abusing the terminology. In this paper we restrict to the case
where the angle and action are one dimensional. We do so to achieve simplicity6.

Remark 10. The assumption that Λ0 is a torus to simplifies the arguments, as Λ0 is compact
without boundary and the normally hyperbolic manifold theorem ensures that Λ0 is perturbed
to a nearby compact normally hyperblic invariant manifold Λε. Having compactess of Λε is
convenient, but does not appear to be necessary.

A more typical setting is when Λ0 is a normally hyperbolic invariant cylinder (possibly with
a boundary) with θ ∈ T1 and I ∈ R. We would then have fε : R2d × R × T → R2d × R × T.
In such case consider I ∈ [0, 1] and artificially ‘glue’ the system so that I is in T1 to apply our
result. Details of how this can be done are found in section Appendix A.

A typical setting where our result can be applied is that of a time dependent perturbation of a
Hamiltonian system of the form

x′ = J∇ (H (x) + εG(x, t)) , (15)

where H : R2d+2 → R2d+2, G : R2d+2 × T1 → R2d+2 and

J =

(
0 Id
−Id 0

)
, for Id =

(
1 0
0 1

)
.

In such case we can take fε (x) = Φε
2π (x, t0), for some t0 ∈ [0, 2π), where Φε

t (x0, t0) stands for the
time t flow induced by (16) with the initial condition (x0, t0). If the unperturbed system admits a
normally hyperbolic invariant cylinder, then we are in the setting from Remark 10.

Another possibility is to consider the flow induced by (16) in the extended phase space and
consider a section of the form Σ × T1 in R2d+2 × T1. Then fε can then be chosen as the section-
to-section map along the flow in the extended phases space. The time coordinate plays the role
of the angle θ and we choose I as the Hamiltonian H0 (energy) of the unperturbed system.

The next theorem is our first main result. It provides conditions for the existence of orbits
which diffuse in I.

6We believe that our methods can be generalised to the higher dimensional case. We make comments how to do so in
Remarks 14, 20 after the statements of our results. We also make a cautionary Remark 44 regarding potential problems
while extending the higher dimensional setting to the case of normally hyperbolic cylinders in Appendix A.
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Figure 2: The setting for Theorem 11.

Theorem 11. Assume that there is a neighborhood U of Λ0 and positive constants Lg,C, λ,
where λ ∈ (0, 1), such that for every x1, x2 ∈ U, and every z ∈ Λ0, xu ∈ Wu

z ( f0,U) and
xs ∈ W s

z ( f0,U) we have
|πI (g(x1) − g (x2))| ≤ Lg ‖x1 − x2‖ , (16)∥∥∥ f n

0 (z) − f n
0 (xu)

∥∥∥ < Cλ|n| for all n ≤ 0,∥∥∥ f n
0 (z) − f n

0 (xs)
∥∥∥ < Cλn for all n ≥ 0.

(17)

Assume that for ε = 0 we have a sequence Γ1, . . . ,ΓL ⊂ U of homoclinic channels for f0,
with corresponding wave maps Ωα

± : Γα → Λ0 and scattering maps σα : dom (σα) → Λ0 for
α = 1, . . . , L.

Assume that for every z ∈ Λ0

1. There exists an α ∈ {1, . . . , L} such that z ∈ dom (σα).
2. There exists an m ∈ N and a point x ∈ Γα, x ∈ Wu

z ( f0,U) ∩W s
σα(z) ( f0) such that f m

0 (x) ∈
W s

f m
0 (σα(z))( f0,U) (see Figure 2) and

m−1∑
j=0

πIg
(

f j
0 (x)

)
−

1 + λ

1 − λ
LgC > 0. (18)

(The above α,m and x can depend on the choice of z.)
Then for sufficiently small ε > 0 there exists an xε and nε > 0 such that

πI
(
f nε
ε (xε) − xε

)
> 1.

Before giving the proof let us make a couple of comments about the assumptions.

Remark 12. Assumption (17) will readily hold when g is C1 since Λ0 is compact, so we can
take U to be compact as well. Conditions (18) will hold due to the contraction and expansion
properties along the stable and unstable manifolds. What is important for us is to have explicit
bounds Lg,C and λ which enter into the key assumption (22). Condition (22) measures the
influence of the perturbation term g on the coordinate I. This can be thought of as a discrete
version of a Melnikov integral. (Instead of an integral we have a sum, since we are working with
a discrete system.) An important feature is that we are computing the sum along a finite fragment
of a homoclinic orbit, and not along the full orbit as is the case in Melnikov theory. The second
term in (22) takes into account the truncated tail.

11



Remark 13. In Theorem 11 we assume that the homoclinic channels are in U, meaning that
they are close to Λ0. This is not a restrictive assumption, since a homoclinic channel which is far
away can be propagated close to Λ0 by using backward iterates of f0.

Remark 14. Theorem 11 can be generalised to the setting of higher dimensional θ and I as
follows. If we have actions I1, . . . , Ik, we can single out one of them (say I = I1) for the conditions
(17) and (22), to obtain diffusion towards the singled out action.

Remark 15. We have assumed that fε(x) = f0(x) + εg(x). We can assume just as well that
fε(x) = f0(x)+εg(ε, x), with smooth g(ε, x). Then in conditions (17) and (19) we can write g(0, ·)
instead of g(·), and the result will follow from the same arguments. Analogous modifications can
be made also in subsequent theorems. We consider g(x) instead of g(ε, x) since it simplifies and
shortens the notation.

Proof of Theorem 11. The manifold Λ0 is perturbed to a normally hyperbolic invariant
manifold Λε for fε. Moreover, for sufficiently small ε if z ∈ Λε, xu ∈ Wu

z ( fε,U) and xs ∈

W s
z ( fε,U) so that ∥∥∥ f n

ε (z) − f n
ε (xu)

∥∥∥ < Cλ|n|ε for all n ≤ 0,∥∥∥ f n
ε (z) − f n

ε (xs)
∥∥∥ < Cλn

ε for all n ≥ 0,
(19)

with λε converging to λ as ε tends to zero.
Since transversal intersections persist under perturbation, the homoclinic channels Γ1, . . . ,ΓL

for f0 are perturbed to homoclinic channels Γ1
ε, . . . ,Γ

l
ε for fε, provided that ε > 0 is sufficiently

small. This leads [22] to a scattering map σεα : Ω
Γαε
−

(
Γαε

)
→ Ω

Γαε
+

(
Γαε

)
for fε.

Our first objective is to show that for any zε ∈ Λε there exists an m ∈ N and α ∈ {0, . . . , L}
(both m and α can depend on zε) such that

πI
(
f m
ε ◦ σ

ε
α(zε) − zε

)
> εc, (20)

where c > 0 is a constant, small enough so that we have

m−1∑
j=0

πIg
(

f j
0 (x)

)
−

1 + λ

1 − λ
LgC > c (21)

for any z ∈ Λ0 (with the same c). We can find such small c because of (19) and compactness of
Λ0.

It turns out that (21) is the main step in our proof, since once it is established the result
follows from the shadowing Theorem 5. Below we first prove (21) and then discuss how to apply
the shadowing method.

Consider now a zε ∈ Λε. By our assumptions, for every x ∈ Λ we have an α ∈ {1, . . . , L},
m ∈ N and x ∈ Wu

z ( f0,U) ∩W s
σα(z) ( f0) such that f m

0 (x) ∈ W s
f m
0 (σα(z)) ( f0,U) and (22) holds. This

means that for sufficiently small ε, for some α ∈ {1, . . . , L} and some m ∈ N we shall have
xε ∈ Wu

zε ( fε,U) and f m
ε (xε) ∈ W s

f m
ε (σεα(zε))

( fε,U), hence by (20)∥∥∥∥ f j
ε (zε) − f j

ε (xε)
∥∥∥∥ < Cλ| j|ε for j ≤ 0 (22)∥∥∥∥ f m+ j

ε

(
σεα (zε)

)
− f m+ j

ε (xε)
∥∥∥∥ < Cλ j

ε for j ≥ 0. (23)

12



Due to (22) and the continuous dependence of xε, λε, for sufficiently small ε we shall have

m−1∑
j=0

πIg
(

f j
ε (xε)

)
−

1 + λε
1 − λε

LgC > c.

In order to show (21) we will split our estimates into three terms

f m
ε

(
σεα (zε)

)
− zε =

[
f m
ε

(
σεα (zε)

)
− f m

ε (xε)
]
+

[
f m
ε (xε) − xε

]
+ [xε − zε] , (24)

and investigate bounds on the projection πI for each of them. We start by showing that∣∣∣πI
[
f m
ε

(
σεα (zε)

)
− f m

ε (xε)
]∣∣∣ ≤ ε 1

1 − λε
LgC. (25)

Indeed, since fε (x) = f0 (x) + εg (x1) and πI f0 (x) = πI x, for any x1, x2 we have

πI fε(x1) − πI fε (x2) = πI f0(x1) + επIg (x1) − πI f0 (x2) − επIg (x2)

= πI (x1 − x2) + επI (g (x1) − g (x2)) .

It follows by induction that

πI

(
f j
ε (x1) − f j

ε (x2)
)

= πI [x1 − x2] + ε

j−1∑
i=0

πI

(
g
(

f i
ε(x1)

)
− g

(
f i
ε(x2)

))
. (26)

Taking x1 = f m
ε

(
σεα (zε)

)
and x2 = f m

ε (xε) from (27) with πI [x1 − x2] moved to the left hand
side, we have∣∣∣πI

[
f m
ε

(
σεα (zε)

)
− f m

ε (xε)
]∣∣∣

=

∣∣∣∣∣∣∣πI

(
f m+ j
ε

(
σεα (zε)

)
) − f m+ j

ε (xε)
)
− ε

j−1∑
i=0

πI

(
g
(

f m+i
ε

(
σεα (zε)

))
− g

(
f m+i
ε (xε)

))∣∣∣∣∣∣∣
< Cλ j

ε + εLg

j−1∑
i=0

∥∥∥ f m+i
ε

(
σεα (zε)

)
− f m+i

ε (xε)
∥∥∥

< Cλ j
ε + εLg

j−1∑
i=0

Cλi
ε,

where the last two inequalities follow from (24). Letting j→ ∞, we obtain (26).
Now consider the third term from (25). An analogous bound to (24) is obtained as follows.

From (27) we have that

πI (x1 − x2) = πI

[
f − j
ε (x1) − f − j

ε (x2)
]

+ ε

j−1∑
i=0

πI

(
g
(

f i− j
ε (x1)

)
− g

(
f i− j
ε (x2)

))
= πI

[
f − j
ε (x1) − f − j

ε (x2)
]

+ ε

−1∑
i=− j

πI

(
g
(

f i
ε(x1)

)
− g

(
f i
ε(x2)

))
. (27)

13



Taking x1 = xε and x2 = zε, from (28) we obtain

|πI (xε − zε)|

≤

∣∣∣∣πI

[
f − j
ε (xε) − f − j

ε (zε)
]∣∣∣∣ + ε

−1∑
i=− j

∣∣∣∣πI

(
g
(

f i
ε(xε)

)
− g

(
f i
ε(zε)

))∣∣∣∣
< Cλ j

ε + εLg

−1∑
i=− j

∥∥∥ f i
ε(x1) − f i

ε(x2)
∥∥∥

< Cλ j
ε + εLg

j∑
i=1

Cλi
ε,

where the last two inequalities follow from (23). Taking j→ ∞ gives

|πI (xε − zε)| ≤ ε
λε

1 − λε
CLg. (28)

We now turn to the middle term from (25). Since fε (x) = f0 (x) + εg (x) and πI f0 (x) = x, it
follows that (below we consider x = f j

ε (xε))

πI

(
fε

(
f j
ε (xε)

)
− f j

ε (xε)
)

= πI f0
(

f j
ε (xε)

)
+ επIg

(
f j
ε (xε)

)
− πI f j

ε (xε)

= επIg
(

f j
ε (xε)

)
so

πI
(
f m
ε (xε) − xε

)
=

m−1∑
j=0

πI

(
f j+1
ε (xε) − f j

ε (xε)
)

= ε

m−1∑
j=0

πIg
(

f j
ε (xε)

)
. (29)

Combining (25), (26), (29), (30) gives

πI
(
f m
ε

(
σεα (zε)

)
− zε

)
> ε

m−1∑
j=0

πIg
(

f j
ε (xε)

)
−

1 + λε
1 − λε

CLg

 .
Since the right hand side of the inequality above depends continuously on ε, from (22) we obtain
(21) for sufficiently small ε.

This establishes the key step (21). We now apply Theorem 5 to prove our result. Indeed, since
ω|Λ0 is nondegenerate, the same is true for ω|Λε

for sufficiently small ε. Since fε is symplectic, by
Remark 8 almost every point of Λε is recurrent for fε|Λε

. Choose x0 ∈ Λε having πI x0 = 0 and
consider α0,m0, (which are allowed to depend on x0) such that for

x1 := f m0
ε ◦ σ

ε
α0

(x0)

we have πI

(
f m0
ε ◦ σ

ε
α0

(x0) − x0

)
> cε. This can be done due to (21). Repeating the procedure,

choosing αi,mi for which
(
πI f mi

ε ◦ σ
ε
αi

(xi) − xi

)
> cε we obtain a pseudo-orbit x0, . . . , xN , where

xi+1 := f mi
ε ◦ σ

ε
αi

(xi), for which
πI (xN − x0) > Ncε.
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Figure 3: A typically shaped strip (left) and a ‘strip’ consisting of two connected components (right).

Choosing N large enough, we obtain that πI (xN − x0) > 1. By Theorem 5 the pseudo-orbit
x0, . . . , xN is δ-shadowed by a true orbit, so by choosing

δ <
1
2

(πI (xN − x0) − 1)

we have the claim.
In Theorem 11 we assume that for any point in Λ0 we can find a pseudo-orbit such that we

have a gain in I. Note however that we do not need to have (22) for all z ∈ Λ0. It is enough to
have (22) for z on some smaller subset of Λ0, provided that we can ensure that the pseudo-orbit
constructed in the proof of Theorem 11 returns to that set. Below we formulate Theorem 17,
which will make this statement precise. First we introduce one notion.

Definition 16. Consider the topology on Λ0 ∩ {I ∈ [0, 1]} induced by Λ0. We say that an open
set S ⊂ Λ0 ∩ {I ∈ [0, 1]} is a strip in Λ0 iff

S ∩ {z ∈ Λ0 : πIz = ι} , ∅ for any ι ∈ [0, 1] .

(Recall that we consider T = R/mod 2π; the interval I ∈ [0, 1] is a strict subset of [0, 2π). Since
S is open in the topology induced on Λ0∩{I ∈ [0, 1]} we require that it contains points with I = 0
and I = 1.)

We refer to S as a ‘strip’ because usually we would choose it to be of the shape as in the left
hand side of Figure 3. In principle though a strip migh look differently, for instance as on the
right hand side plot in figure 3. (Provided that conditions from below corollary are fulfilled, the
result holds regardless from the shape of the ‘strip’.)

In subsequent two theorems we consider two strips S + and S −. The strip S + is used to validate
diffusion in I, which increases I by order one. The strip S − will be used to prove diffusion in
which I decreases by order one.

Theorem 17. Assume that conditions (17) and (18) are satisfied, and that for ε = 0 we have
the sequence scattering maps σα : dom (σα) → Λ0 for α = 1, . . . , L. Let S + ⊂ Λ0 be a strip7.
Assume that for every z ∈ S +

1. there exists an α ∈ {1, . . . , L} for which z ∈ dom (σα),

f m
0 ◦ σα (z) ∈ S +, (30)

7We add the plus in the superscript for S + since this strip is used to increase I. In subsequent theorem we will have
another strip S − to obtain diffusion in the oposite direction.
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2. there exists a constant m ∈ N and a point x ∈ Wu
z ( f0,U) ∩ W s

σα(z) ( f0) such that f m
0 (x) ∈

W s
f m
0 (σα(z))( f0,U) and

m−1∑
j=0

πIg
(

f j
0 (x)

)
−

1 + λ

1 − λ
LgC > 0. (31)

Then for sufficiently small ε > 0 there exists an xε and nε > 0 such that

πI
(
f nε
ε (xε) − xε

)
> 1.

Proof. The result follows by making minor adjustments to the arguments in the proof of
Theorem 11. So, let S +

ε ⊂ Λε be the perturbation of the strip S + ⊂ Λ0. As in the proof of
Theorem 11 we construct a pseudo orbit xi+1 = f mi

ε ◦ σ
ε
αi

(xi), starting with a point x0 ∈ S +
ε

with πI x0 = 0. Note we assume that (31) holds for any z ∈ S + (with choices of m and α
depending on z). This means that for sufficiently small ε, and for any point zε ∈ S +

ε , there is an
m = m (zε) , α = α (zε) such that f m(zε)

ε ◦ σεα(zε)
(zε) ∈ S +

ε . In other words, zε ‘returns’ to the strip
for sufficiently small ε. Due to the compactness of S +, a sufficiently small choice of ε guarantees
that we have f m(zε)

ε ◦ σεα(zε)
(zε) ∈ S +

ε for all zε ∈ S +
ε . In short, condition (31) ensures that the

pseudo-orbit xi+1 = f mi
ε ◦ σ

ε
αi

(xi) remains within the strip S +
ε for sufficiently small ε. By (32)

and identical arguments to those from Theorem 11 we therefore have

πI (xi+1 − xi) > εc,

for some c > 0, and the result follows from the shadowing argument just as in the proof of
Theorem 11.

A mirror result gives diffusion in the opposite direction.

Theorem 18. Assume that conditions (17) and (18) are satisfied, and that for ε = 0 we have the
sequence of scattering maps σα : dom (σα) → Λ0 for α = 1, . . . , L. Let S − ⊂ Λ0 be a strip.
Assume that for every z ∈ S −

1. there exists an α ∈ {1, . . . , L} for which z ∈ dom (σα),

f m
0 ◦ σα (z) ∈ S −,

2. there exists a constant m ∈ N and a point x ∈ Wu
z ( f0,U) ∩ W s

σα(z) ( f0) such that f m
0 (x) ∈

W s
f m
0 (σα(z))( f0,U) and

m−1∑
j=0

πIg
(

f j
0 (x)

)
+

1 + λ

1 − λ
LgC < 0.

Then for sufficiently small ε > 0 there exists an xε and nε > 0 such that

πI
(
xε − f nε

ε (xε)
)
> 1.

Proof. The proof follows as in the proof of Theorem 17.
Bu combining the two strips we obtain shadowing of any prescribed finite sequence of ac-

tions.

Theorem 19. Assume that two strips S + and S − satisfy assumptions of Theorems 17 and 18,
respectively. If in addition
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1. for every z ∈ S + there exists an n (which can depend on z) such that f n
0 (z) ∈ S −, and

2. for every z ∈ S − there exists an n (which can depend on z) such that f n
0 (z) ∈ S +,

then for any given finite sequence {Ik}
N
k=0 and any given δ > 0, for sufficiently small ε there exists

an orbit of fε which δ-shadows the actions Ik; i.e. there exists a point zε0 and a sequence of
integers nε1 ≤ nε2 ≤ . . . ≤ nεN such that ∥∥∥∥πI f

nεk
ε (zε0) − Ik

∥∥∥∥ < δ.
Proof. Suppose that I1 > I0. (The opposite case will be analogous.) As in the proof of

Theorem 17, we construct a pseudo orbit xi+1 = f mi
ε ◦ σ

ε
αi

(xi), xi ∈ S +
ε , starting with a point x0

with πI x0 = I0, such that
πI (xi+1 − xi) > εc,

for some c > 0. We can therefore find a pseudo orbit for which
∣∣∣πI xi1 − I1

∣∣∣ < δ/2, for some i1 > 0.
If I2 > I1, and we carry on as in the proof of Theorem 17, continuing with our pseudo-orbit along
S +
ε , until we reach xi2 such that

∣∣∣πI xi2 − I2
∣∣∣ < δ/2. If on the other hand I2 < I1, then we take

xi1+1 = f n
ε (xml1

), where the n is the number from assumption 1. (for z = xi1 ). For sufficiently
small ε we will obtain that xi1+1 ∈ S −ε . We now construct the subsequent points xi along the strip
S −ε , going down in I along each step, until we reach xi2 satisfying

∣∣∣πI xi2 − I2
∣∣∣ < δ/2. Depending

on whether Ik+1 > Ik or Ik+1 < Ik we procede in an analogous manner: to move up in I we
construct the given fragment of the pseudo-orbit along S +

ε ; and to go down in I we construct the
given fragment of the pseudo-orbit along S −ε . Assumptions 1., 2. ensure that our pseudo-orbit
can be chosen to jump between the strips S +

ε and S −ε at any stage of the construction.
This way we construct a pseudo orbit for which∣∣∣πI xik − Ik

∣∣∣ < δ/2 for k = 0, . . . ,N.

By Theorem 5 the pseudo-orbit xi can be δ/2-shadowed by a true orbit, which concludes our
proof.

Remark 20. Theorems 17, 18, 19 can be generalised to the setting of higher dimensional I by
singling out one action, as in Remark 14. The definition of the strip is then with respect to that
particular action.

4. Example of application

In this section we discuss our example, the generalized standard map, to which we apply
our method. We give a computer assisted proof of the existence of diffusing orbits by applying
Theorem 19. We validate the assumptions of the theorem using two independent implemen-
tations, which use different methods to obtain bounds on the stable/unstable manifolds of the
NHIM. The first is based on cone conditions [24, 25, 26], and the second on the parameterization
method [27, 28, 29].

4.1. The Generalized Standard Map
Let V(q) be a Zn-periodic function. Consider a map f : R2n → R2n given by

f (q, p) = (q + p + ∇V(q), p + ∇V(q)).
17



Remark 21. The map f is symplectic and has the generating function

S (q,Q) =
1
2
‖Q − q‖2 + V(q).

Remark 22. When V = 0 the map is completely integrable. When n = 1 and V(q) = α cos(q)
then we obtain the Chirikov Standard Map.

For our example, taking q = (x, θ) , p = (y, I) and

Vε(x, θ) = α cos (x) − ε sin(x) sin(θ),

we obtain a family of maps (3). To be in line with the setup from section 3 we interpret that
fε : R2 × T2 → R2 × T2. (We could just as well interpret fε to be on T4.)

In our example we take α = 4. For this parameter, when ε = 0, on the x, y coordinates
we have a hyperbolic fixed point at the origin. The reader can get a sense of the dynamics by
referring to the simulation results illustrated in Figure 1.

At ε = 0 the system consists of a pair of decoupled maps F : R2 → R2 and G : T2 → T2

f0 (x, y, θ, I) = (F (x, y) ,G (θ, I)) . (32)

The origin on the x, y plane is a hyperbolic fixed point of F and DF(0) has eigenvalues λ, λ−1 for
λ = 3 − 2

√
2 (here we took α = 4).

The torus
Λ0 =

{
(0, 0, θ, I) : θ ∈ T1, I ∈ T1

}
is a normally hyperbolic invariant manifold for f0 with the rates λ and µ =

√
1
2

√
5 + 3

2 . (The µ
is the norm of the matrix acting on θ, I in (3) for ε = 0. In fact, µ is the famous golden ratio.)

We consider the standard symplectic form

ω = dx ∧ dy + dθ ∧ dI.

The maps fε are ω-symplectic and ω|Λ0 is non-degenerate.

Remark 23. Note that with the coupling considered in (3), for ε > 0 the manifold Λ0 remains
invariant, and the dynamics on it remains unchanged. We remark that our method does not
depend on this property. Rather, we have chosen such a coupling so that it is evident that it is
impossible to diffuse in I by using the ‘inner dynamics’ on the perturbed manifold. Our diffusion
is driven by the ‘outer dynamics’ along the homoclinic connections, which is clearly visible here.

We prove the following result.

Theorem 24 (Diffusion in the generalized standard map). Let δ be an arbitrary, fixed, strictly
positive number. Then for every finite sequence

{
Il
}L

l=0
⊂

[
1
5 , π −

1
10

]
, there exists an ε > 0, a

sequence of integers nε1, . . . , n
ε
L and an orbit zε0, . . . , z

ε
L, zεl = f

nεl
ε

(
zεl−1

)
, for l = 1, . . . , L, such that∣∣∣πIzεl − Il

∣∣∣ < δ, for l = 0, . . . , L.

Remark 25. The proof of this theorem is based on computer assisted validation of the assump-
tions of Theorem 19. The strips validated by our computer program are depicted in Figure 4.
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2π
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θ

Figure 4: The strips from Theorem 19 for the map (3), validated by our computer program. The S + is in black and S − in
gray. The angle θ is on the horizontal axis and I on the vertical axis.

Remark 26. From our validation of the strips (see Figure 4) it follows also that we can take
the interval

[
π + 1

10 , 2π −
1
5

]
instead of

[
1
5 , π −

1
10

]
in Theorem 24. Between these two intervals

though, at I = π, we have a gap, which our method is unable to overcome. In other words, we
are not able to establish an orbit which would start with I ∈ (0, π) and finish with I ∈ (π, 2π) (and
vice versa).

Remark 27. The diffusion is in fact be established for intervals reaching in I slightly closer to
0 and π than stated in Theorem 24, where we have rounded down the intervals. Our computer
assisted proof based on the parameterization method does a better job and produces higher (in
I) strips than the method based on cone conditions. This is because the parametrization method
leads to much higher accuracy of the bounds on the stable/unstable manifolds, which is then
reflected in better accuracy of the remaining computations. Both methods though can be used to
validate the I-intervals stated in Theorem 24 and Remark 26.

Remark 28. If we take the parameter α in (3) closer to zero, then the unstable eigenvalues at the
origin becomes smaller and the example becomes more challenging numerically. This is because
with weak hyperbolicity it is more difficult to obtain good estimates on the manifolds; also the
homoclinic excursion takes more iterates. We have found that close to α = 0.15 the method
based on cone conditions fails, but the parametrization method can still be applied.

4.2. Proof of Theorem 24
The proof of Theorem 24 exploits computer assisted validation methods for studying the

local stable/unstable manifolds of fixed points. We apply these for the map F from (33), i.e. the
unperturbed map acting on x, y. We take the origin as our fixed point of F. The methods allow
us to obtain an open interval J ⊂ R and smooth functions Pu : J → R2 and Ps : J → R2 such
that Pu (J) is the local unstable manifold Wu

0 (F,U) of the origin for F, and Ps (J) is the local
stable manifold W s

0 (F,U) of the origin for F, for some neighbourhood U of the origin. We give
a description of both methods in section 5. For the purpose of this section it is enough that we
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Table 1: Homoclinic orbit
i x0

i y0
i

0 0.003855589164542 0.003194074612644
1 0.022471982225036 0.018616393060494
2 0.130968738959384 0.108496756734347
3 0.761844080808229 0.630875341848845
4 4.153747139236954 3.391903058428725
5 4.153747139236954 0.000000000000001
6 0.761844080808229 -3.391903058428725
7 0.130968738959384 -0.630875341848845
8 0.022471982225036 -0.108496756734347
9 0.003855589164542 -0.018616393060494
10 0.000661514551898 -0.003194074612644

can obtain explicit bounds for such functions, as well as for their first derivatives. Moreover, the
methods allow us to obtain explicit bounds C, λ ∈ R, C, λ > 0 such that∥∥∥F i (Ps(x))

∥∥∥ ≤ Cλi∥∥∥F−i (Pu(x))
∥∥∥ ≤ Cλi for all i ∈ N and x ∈ J. (33)

The functions Pu and Ps give only a local description of the unstable and stable manifolds.
To establish their intersections we use the following parallel shooting approach. Define F :
J × B1 × . . .× BM × J → R2M+2, where Bi ⊂ R2 are cartesian products of two closed intervals, as

F (x, v0, . . . , vM−1, y)

:= (Pu(x) − v0, F (v0) − v1, . . . , F (vM−2) − vM−1, F (xM−1) − Ps(y)).

If we establish the existence of a point p∗ =
(
x∗, v∗0, . . . , v

∗
M−1, y

∗
)

for which

F (p∗) = 0, (34)

then we have established a sequence of points v∗0, . . . , v
∗
M , where v∗1 = Pu(x∗) and v∗M = Ps(y),

along a homoclinic to zero. The bound on the solution of (35) can be established by using the
interval Newton theorem8; see section 2.3. This way, we obtain a homoclinic orbit within a set
of the form

v∗i ∈
[
x0

i − r, x0
i + r

]
×

[
y0

i − r, y0
i + r

]
for i = 0, . . . ,M (35)

where x0
i , y

0
i are written in Table 1. (Our M is equal to 10.)

We use two methods to obtain bounds on Pu and Ps. In the case of the first method, by using
cones, we obtain

r = rcones = 1.5 · 10−7, (36)

8An alternative could be to use the Newton-Krawczyk theorem or a version of the Newton-Kantorovich theorem. We
use the interval Newton theorem because of its simplicity and the fact that it is sufficient for our needs in this particular
example.
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and by using the second method, i.e. the parameterisation method, we obtain

r = rparam = 6.5 · 10−15. (37)

(The bounds on our computer program are in fact often tighter and vary from pint to point. Here
we have rounded them up to write a uniform enclosure r for all considered points.)

Since we use the interval Newton method as the tool for our validation we also obtain
transversality of obtained intersection of our manifolds. (Such results are well known, see for
instance [30] for a similar approach. We add the proof in the appendix to keep the work self-
contained.)

Lemma 29. The manifolds Wu
0 (F) and W s

0 (F) intersect transversally.

Proof. The proof is given in Appendix B.
Define the sequence (

x∗i , y
∗
i
)

:= F i
(
v∗0

)
for all i ∈ Z.

Note that
(
x∗i , y

∗
i

)
= v∗i , for i = 0, . . . ,M. We now show that for ε = 0 (3) has a well defined

homoclinic channel with a global scattering map.

Lemma 30. The set
Γ =

{(
x∗0, y

∗
0, I, θ

)
: I, θ ∈ T1

}
,

is a homoclinic channel for f0 and the associated scattering map σ is globally defined and is the
identity on Λ0.

Proof. To show that Γ is a homoclinic channel for f0 we need to prove points (i), (ii) and (iii)
from Definition 3.

We start by observing that for p ∈ Γ

TpΓ = {(0, 0)} × R2. (38)

Since Wu
0 (F) , W s

0 (F) intersect transversally in R2 at v∗0 we also have

Tv∗0 W s
0 (F) ⊕ Tv∗0 Wu

0 (F) = R2, (39)

Tv∗0 W s
0 (F) ∩ Tv∗0 Wu

0 (F) = {0} . (40)

Since Wu
Λ

( f0) = Wu
0 (F) × T2 and W s

Λ
( f0) = W s

0 (F) × T2 we see that for p ∈ Γ

TpWu
Λ ( f0) = Tv∗0 Wu

0 (F) × R2, (41)

TpW s
Λ ( f0) = Tv∗0 W s

0 (F) × R2. (42)

From (40), (42), (43) and (41), (42), (43), (39) we obtain, respectively,

TpW s
Λ ( f0) ⊕ TpWu

Λ ( f0) = R4,

TpW s
Λ ( f0) ∩ TpWu

Λ ( f0) = {0} × R2 = TpΓ,

which proves (i) from Definition 3.
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Since any two points that converge to each other need to start with the same values on θ, I we
see that for any z ∈ Λ0

Wu
z ( f0) = Wu

0 (F) ×
{
π(θ,I)z

}
, (43)

W s
z ( f0) = W s

0 (F) ×
{
π(θ,I)z

}
. (44)

This means that the wave maps are of the form

Ω±
(
x∗0, y

∗
0, θ, I

)
= (0, 0, θ, I) . (45)

Clearly Ω± are diffeomorphisms as required in (iii) from Definition 3.
From (44), (45) we see that for any p ∈ Γ and z ∈ Λ0

TpWu
z ( f0) = Tv∗0 Wu

0 (F) × {(0, 0)} , (46)

TpW s
z ( f0) = Tv∗0 W s

0 (F) × {(0, 0)} , (47)

Combining (39) with (47), (48) and comparing with (42), (43) gives

TpΓ ⊕ TpWu
z ( f0) = Tv∗0 Wu

0 (F) × R2 = TpWu
Λ (F) ,

TpΓ ⊕ TpW s
z ( f0) = Tv∗0 W s

0 (F) × R2 = TpW s
Λ (F) ,

which means that we have (ii) from Definition 3. We have established that Γ is a homoclinic
chanel. From (46) we see that the associated scattering map σ is globally defined and is the
identity on Λ0.

We validate strips S + and S − with shapes as in Figure 4. These are composed of small
overlapping rectangular fragments. Below we introduce a lemma which we then apply on each
such rectangular part. First we introduce a notation. For a, b ∈ [0, 2π) we define the interval
[a, b] ⊂ T1= R/mod 2π as

[a, b] =

{ {
x ∈ T1 : a ≤ x ≤ b

}
if a ≤ b,

{x ∈ R : b ≤ x ≤ a + 2π} mod 2π if b < a.
(48)

We define (a, b) ⊂ T1 as the interior of [a, b].
Let I1, I2 ∈ (0, 2π) satisfy I1 < I2. Let s1, s2 ∈ T1, and consider strips on Λ0 of the form

{(0, 0)} × [s1, s2] × [I1, I2] . (49)

(In (50) the interval [s1, s2] is in the sense (49).) We now have the following lemma.

Lemma 31. If
M−1∑
i=0

sin(x∗i ) cos(θ + iI) > 3
1 + λ

1 − λ
C (50)

and if for every (θ, I) ∈ [s1, s2] × [I1, I2] there exists an m ≥ M (the m can depend on the choice
of (θ, I)) such that

θ + mI ∈ (s1, s2) , (51)

then assumptions of Theorem 17 hold true for our map (3) on the strip (50).
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Proof. Condition (31) follows from (52). We need to validate (32). Since v∗M ∈ Ps(J), from
(34) it follows that |x∗m| < Cλm−M , for m ≥ M.

Consider an arbitrary fixed (θ, I) ∈ [s1, s2] × [I1, I2] and let

Cm :=
m−1∑
j=0

sin(x∗j) cos(θ + jI).

Since for j ≥ M we know that |x∗j | < Cλ j−M , we see that for m ≥ M

|Cm −CM | ≤

m−1∑
j=M

∣∣∣sin(x∗j)
∣∣∣ |cos(θ + jI)| ≤ C

1 − λm−M

1 − λ
< C

1 + λ

1 − λ
. (52)

Observe that the map (x, y, θ, I)→ sin(x) cos (θ) is Lipschitz with the constant Lg = 2.
For z = (0, 0, θ, I) ∈ {(0, 0)} × [s1, s2] × [I1, I2], consider x =

(
x∗0, y

∗
0, θ, I

)
∈ Wu

z ( f0,U) ∩

W s
σα(z) ( f0). Since

(
x∗0, y

∗
0

)
= v∗0 ∈ Pu(J) and v∗M ∈ Ps(J), for every m ≥ N, f m

0 (x) ∈ W s
f m
0 (σα(z))( f0,U).

Also, for every m ≥ M, by using (51) and (53), we obtain

m−1∑
j=0

πIg
(

f j
0 (x)

)
−

1 + λ

1 − λ
LgC =

m−1∑
j=0

sin(x∗j) cos(θ + jI) − 2
1 + λ

1 − λ
C

≥ CM − |Cm −CM | − 2
1 + λ

1 − λ
C

≥ CM − 3
1 + λ

1 − λ
C

> 0,

which ensures (32). This finishes our proof.

Remark 32. A mirror result lets us validate assumptions of Theorem 18. The only difference is
that instead of (51), we require

N−1∑
i=0

sin(x∗i ) cos(θ + iI) < −3
1 + λ

1 − λ
C.

We are now ready to prove Theorem 24.
Proof of Theorem 24. By Lemma 29 the stable and unstable manifolds of the origin for the

map F intersect transversally. Moreover, we have explicit bounds for a homoclinic orbit along
this intersection, written in Table 1 and (36–38). This means that, by Lemma 30, the scattering
map for the unperturbed system is well defined.

Using the bounds from Table 1 and (36–38), which give an enclosure of a finite fragment of
the homoclinic orbit, and together with the aid of Lemma 31, our computer program constructs
the strip S + from Figure 4. This strip is a union of overlapping rectangles, for which assumptions
of Theorem 17 are satisfied. We use a mirror result to Lemma 31 (see Remark 32), to construct
the strip S − from Figure 4, for which assumptions of Theorem 18 are satisfied. We also validate
that for these two strips conditions 1. and 2. of Theorem 19 are fullfiled.

After such validation the result follows from Theorem 19.
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Figure 5: The cone at z intersected with B (in dark grey) is mapped into the cone at F̃(z) (in light grey).

The computer assisted proof using cone conditions for the validation of intersections of the
manifolds was performed with the CAPD9 library [31]. The parametrisation method approach
was implemented in Matlab. The source code is available on the web page of the corresponding
author.

5. Invariant manifolds and their intersections

We now discuss computation of the local stable and unstable manifolds, with a focus on
obtaining mathematically rigorous computer assisted error bounds on all approximations.

5.1. Cone conditions for the (un)stable manifold

The ideas presented here are based on the more general method from [24]. We reformulate
the results for our particular setting, giving sketches of proofs, in order to keep the paper self-
contained.

Let F be the map (33), i.e. the unperturbed map f0 acting on x, y. Let P ∈ R2×2 and
F̃ : R2 → R2 be defined as follows

P :=
(

1 +
√

2 1 −
√

2
2 2

)
, F̃ (z) := P−1F (Pz) ,

where we recall that α = 4. The matrix P is the coordinate change to Jordan form for DF(0)
and F̃(z) is the map expressed in local coordinates, which diagonalizes the stable and unstable
directions at the origin, i.e. DF̃ (0) = diag

(
(3 − 2

√
2)−1, 3 − 2

√
2
)
. We refer to these as the local

coordinates, as F̃ is expressed as z = (u, s). (The u stands for ‘unstable’ and s for ‘stable’.)
Let L ∈R be a fixed constant satisfying L > 0 and define C : R2 → R2 as

C (u, s) = L |u| − |s| .

For z ∈ R2 we define the cone at z as C+ (z) := {v : C (z − v) ≥ 0} (see Figure 5). Let r > 0 be
fixed, J := [−r, r] ⊂ R and let B ⊂ R2 be the rectangle B := [−r, r] × [−Lr,Lr] .

Definition 33. We say that F̃ satisfies cone conditions in B if for every z ∈ B we have (see Figure
5)

F̃
(
C+(z) ∩ B

)
⊂ C+

(
F̃ (z)

)
.

9Computer Assisted Proofs in Dynamics: http://capd.ii.uj.edu.pl
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We have the following lemma, which gives bounds on the unstable manifold in the local
coordinates.

Lemma 34. If F̃ satisfies cone conditions in B, and there exists a λ < 1 such that for every
z ∈ C+ (0) we have

|πuF̃(u, s)| > λ−1 |u| , (53)

then there exists a smooth function w : J → [−rL, rL], such that

Wu
0 (F̃, B) = {(u,w(u)) : u ∈ J} .

Moreover,
∣∣∣ d

du w(u)
∣∣∣ ≤ L and for every u ∈ J∥∥∥F̃−n (u,w(u))

∥∥∥ < λn
√

1 +L2 |u| . (54)

Proof. This lemma in a slightly more general form was proven in [32]. We therefore limit
ourselves to a sketch of the proof, which is given in Appendix C.

In practice we can validate cone conditions and (54) from the interval enclosure of the deriva-
tive of F̃ on B. We give proofs of below lemmas in the appendix.

Lemma 35. If [DF̃ (B)] (C+ (0)) ⊂ C+ (0) then F̃ satisfies cone conditions.

Above lemma is straighforward to apply in interval arithmetic by checking that

[DF̃ (B)] ({1} × [−L,L]) ⊂ C+ (0) .

Lemma 36. Let a11, a12, a21, a22 be real intervals such that [DF̃ (B)] = (ai j)i, j∈{1,2}. If a11 −

L |a12| > λ
−1 then (54) is fullfiled.

Using a computer program we compute an interval enclosure [DF̃(B)]. This enclosure is
used to validate, via Lemmas 35 and 36, the assumptions of Lemma 34. This way we obtain
w : J → [−rL, rL], and define Pu : J → R2 by

Pu(x) := P (x,w(x)) .

Note that since w(x) is Lipschitz with constant L, w(x) ∈ [−Lx,Lx], our method allows us to
obtain the explicit bound

Pu(x) ⊂ P ({x} × [−Lx,Lx]) , for every x ∈ J.

Moreover, by Lemma 34 we know that d
dx (x,w(x)) ∈ {1} × [−L,L], which gives the bound on

the derivative of Pu as

d
dx

Pu(x) ⊂ P ({1} × [−L,L]) , for every x ∈ J.

From (55) we also see that for every x ∈ J∥∥∥F−n (Pu(x))
∥∥∥ =

∥∥∥PF̃−n (x,w(x))
∥∥∥ ≤ ‖P‖ λn

√
1 +L2 |x| ≤ Cλn,

for C := ‖P‖
√

1 +L2r; recall that J = [−r, r]. We thus see that we have all the bounds for Pu,
which are required by section 24.

The function Ps and associated bounds can be obtained the same way, by considering F−1

instead of F.
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5.2. Parameterization method for the (un)stable manifold with validated error bounds
We now review a method for computing high order polynomial expansions of chart maps

for the local stable/unstable manifolds, providing accurate approximations further from the fixed
point. Employing these expansions improves error bounds in computer assisted proofs for con-
necting orbits, as it shortens the orbit segment between the local stable/unstable manifold seg-
ments. This in turn improves the condition number of the matrix appearing in the interval Newton
method.

The idea behind the parameterization method is to find a chart map conjugating the given
dynamics to the linear dynamics at the fixed point. The conjugacy is then used to accurately track
orbits as they approach the fixed point. Since the chart map expansions are used in computer
assisted proofs, it is necessary to develop explicit and mathematically rigorous bounds for the
truncation errors. We also need to be able to compute rigorous enclosure on derivatives.

Our approach is adapted from more general results of [30], a work which is itself based on the
parameterization method of [33, 34, 29]. We refer to the book of [35] for much more complete
discussion of the parameterization method. The key is that the desired conjugacy relation is
viewed nonlinear functional equation, and error bounds are obtained via fixed point arguments
in appropriate function spaces. Rather than proceeding in full generality, we focus for the sake
of simplicity only on the details needed in the present work.

So, suppose that f : C2 → C2 is a function of two complex variables, analytic in an open set
about the fixed point z0. Let λ ∈ C denote an unstable eigenvalue of D f (z0), so that |λ| > 1, and
let ξ ∈ C2 be an associated eigenvector of λ.

With D ⊂ C denoteing the unit disk in the complex plane, we look for an analytic function
P : D→ C2 having that P(0) = z0, P′(0) = ξ, and that P solves the invariance equation

f (P(σ)) = P(λσ), σ ∈ D. (55)

Such a P parameterizes a local unstable manifold attached to z0. Indeed, the equation requires
that applying the linear dynamics in D is the same as applying the full dynamics on the image of
P: that is, P is a conjugacy as desired.

Since λ , 0 we are able to compose both sides of the invariance equation with the mapping
σ 7→ λ−1σ and obtain the equivalent fixed point problem

P(σ) = f (P(λ−1σ)), for σ ∈ D. (56)

This problem has exactly the same solution, but is better suited for a-posteriori error analysis.
Writing

P(σ) =

∞∑
n=0

(
an

bn

)
σn =

∞∑
n=0

pnσ
n,

we impose that p0 = z0 and p1 = ξ, so that P satisfies the first order constraints, i.e. P(0) = z0
and DP (0) = ξ. The coefficients p2, p3, p4, . . . are computed via a power matching argument,
which depends strongly on the nonlinearity of f . See Appendix F for the derivation when f is
the standard map.

Let

PN(σ) =

N∑
n=0

(
an

bn

)
σn,

denote the approximate parameterization obtained by truncating P to order N. That is, we sup-
pose that the coefficients p0, . . . , pN are exactly the Taylor coefficients of P. In practice these
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must be computed using validated numerical methods and are known only up to interval enclo-
sures.

Our goal is to understand the truncation error on D. Define the defect function

EN(σ) = f [PN(λ−1σ)] − PN(σ).

The quantity
εN =

∥∥∥EN
∥∥∥

0 ,

is an a-posteriori error indicator on D associated with the approximation PN . We note that εN is
made small either by taking N large or by taking ‖ξ‖ small. In practice this is a delicate balancing
act, see Remark 41 below.

Small defects do not necessarily imply small errors, and further hypotheses are needed to
bound the truncation error associated with PN in terms of εN . We now formulae an a-posteriori
theorem, whose proof is given in Appendix H for the sake of completeness. The statement
requires a little notation and a few additional definitions having to do with the Taylor remainder
at z0.

So, for σ ∈ C let |σ| denote the usual complex absolute value. We write z = (z1, z2) ∈ C2 and
endow C2 with the norm

‖z‖ = max(|z1|, |z2|).

This induces a norm on the set of all 2 × 2 matrices with complex entries given by

‖A‖ = max(|a11| + |a12|, |a21| + |a22|).

With this norm we have that
‖Az‖ ≤ ‖A‖‖z‖.

For a function P : D→ C2 we write

‖P‖0 = sup
σ∈D
‖P(σ)‖,

to denote the usual supremum norm on C0(D,C2) norm. Recall that the set

D =
{
P : D→ C2 : P is analytic on D and ‖P‖0 < ∞

}
,

is a Banach space.
Fix z0 ∈ C2 and r∗,R ∈ R with 0 < r∗ < R. For ‖z− z0‖ < R and ‖w‖ < r∗ write the first order

Taylor expansion of f as
f (z + w) = f (z) + D f (z)w + Rz(w).

Here Rz(·) – the first order Taylor remainder at z – is analytic in both z and w.
By the Taylor remainder theorem there are constants 0 < C1,C2 with

sup
‖z−z0‖≤R

‖Rz(w)‖ ≤ C1‖w‖2, for ‖w‖ ≤ r∗, (57)

and
sup

‖z−z0‖≤R
‖DRz(w)‖ ≤ C2‖w‖, for ‖w‖ ≤ r∗. (58)
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There is also a C3 > 1 having
sup

‖z−z0‖≤R
‖D f (z)‖ ≤ C3. (59)

If f is entire thenRz(w) is entire in both z and w, and explicit constants C1,C2,C3 for the standard
map are derived in Appendix G. In general what is needed is that f is analytic on a ball about z0
of radius R + r∗.

Theorem 37 (A-posteriori error bounds for Equation (56)). Suppose that f : C2 → C2 fixes
the point z0 ∈ C2. Let 0 < r∗ < R and suppose that and that f is analytic for all z ∈ C2 with

‖z − z0‖ < R + r∗.

Assume that D f (z0) has a single unstable eigenvalue, denoted by λ, and let µ = λ−1 and ξ ∈ C2

be an eigenvector associated with λ. Let P denote the solution of Equation (56) on the unit disk
D ⊂ C, and let p0, . . . , pN ∈ C2 denote the zeroth through N-th order power series coefficients
of P subject to the constraints p0 = z0 and p1 = ξ.

Let C1, C2, and C3 be as defined in Equations (58), (59), and (60), and assume tha they
satisfy

N∑
n=1

µn‖pn‖ < R, (60)

and
4C2|µ|

2(N+1) <
(
1 −C3|µ|

N+1
)2
. (61)

If r > 0 has
r ≤ r∗, (62)

and
C2|µ|

2(N+1)r2 −
(
1 −C3|µ|

N+1
)

r + εN < 0, (63)

then
sup
|σ|≤1

∥∥∥P(σ) − PN(σ)
∥∥∥ ≤ r.

Remark 38 (Existence of an r > 0 satisfying the hypotheses of Equation (64).). Observe that

p(r) = C2|µ|
2(N+1)r2 −

(
1 −C3|µ|

N+1
)

r + εN ,

is a quadratic polynomial with p(0) = εN > 0 and p′(0) = −
(
1 −C3|µ|

N+1
)
< 0. If the discrim-

inant condition hypothesized in Equation (62) is met, then p(r) has two positive real roots r±,
and moreover p(r) is negative for all r ∈ (r−, r+). Given the problem data C2, C3, |µ|, N, and εN ,
finding an appropriate value of r is a matter of solving a quadratic equation.

Remark 39 (Stable manifold parameterization). The standard map is symplectic, so that if
|λ| < 1 is a stable eigenvalue of D f (z0) then 1/λ is an unstable eigenvalue. The standard map is
entire with entire inverse, and the theorem above applies to the unstable manifold of f −1. A more
general alternative, which does not require invertibility of f , is to study separately the equation

P(λσ) = f (P(σ)),

and develop analogous a-posteriori analysis for this equation. See [30].
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Remark 40 (Real invariant manifolds). Suppose that f is real valued for real inputs, as is the
case for the standard map. Then p0, is real, and we are interested in the real image of P. In
the case considered in the present work – that of a real hyperbolic saddle – the eigenvalues and
eigenvectors are real also. It follows that solutions an and bn of Equation (F.5) are real at all
orders. Taking real values of σ provides the parameterization of the real stable manifold for f
at p0, and treating σ as a complex variable is a convenience which facilitates the use of analytic
function theory in the error analysis.

Remark 41 (Scaling the eigenvector). The coefficients p2, p3, p4, . . ., and hence the solution
P(σ), are only unique up to the choice of the scaling of the eigenvector. This is seen explic-
itly in Appendix F, where the formal series solution of Equation (57) is derived. This lack of
uniqueness is exploited in numerical calculations, providing control over the growth rate of the
coefficient sequence. Algorithms for determining optimal scalings are discussed in [36]. In the
present work we determine good scalings through numerical experimentation. More precisely,
we fix at the start of the calculation the order of approximation N. Then we adjust the scaling of
the eigenvector so that coefficients of order N are roughly of size machine epsilon, as the mag-
nitude of the N-th power series coefficient of P serves as a good heuristic indicator of the size of
the truncation error.

Remark 42 (Bounds on derivatives). Suppose that P(σ) = PN(σ) + H(σ) for |σ| < 1, with
‖H‖0 ≤ r. Then P is differentiable on D with

d
dσ

P(σ) =
d

dσ
PN(σ) +

d
dσ

H(σ),

for all σ ∈ D. Here PN(σ) is a polynomial whose derivative is given by the standard formula.
The derivative of H is bounded on any smaller disk thanks to the Cauchy bound

sup
|σ|≤e−ν

∥∥∥∥∥ d
dσ

H(σ)
∥∥∥∥∥ ≤ 2π

ν
‖H‖0 ≤

2π
ν

r, (64)

where ν > 0. A proof is in [30].

In practice finding εN requires a bound on the tail of f (PN(σ)), and this will of course depend
on the explicit form of the map f . For example, if f is the Chirikov Standard Map

f (z1, z2) =

(
z1 + z2 + α sin(z1)

z2 + α sin(z1)

)
, (65)

then we write

f
(
PN

(
λ−1σ

))
=

∞∑
n=0

fnσn,

and observe that we have to study the term [sin(PN
1 (λ−1σ))]n – the Taylor coefficients of the

composition of PN with the sine function. Indeed, we have that

EN(σ) = f (PN(λ−1σ)) − PN(σ)

=

∞∑
n=N+1

fnσn = α

∞∑
n=N+1

[sin(PN
1 (λ−1σ))]n

[
1
1

]
σn,
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as the lower order terms cancel exactly by hypothesis, and the linear operations on PN do not
contribute to the tail of the series. Then by taking

εN =

∞∑
n=N+1

‖ fn‖ =

∞∑
n=N+1

|α|
∣∣∣[sin(PN

1 (λ−1σ))]n

∣∣∣
we obtain

‖EN‖0 ≤ εN ,

as needed.
However the Taylor series expansion of sin(PN

1 (λ−1σ)) is an infinite series, even though PN

is a polynomial, and bounding the tail is not a finite calculation. The following Lemma, whose
proof is found in Appendix I, exploits the fact that sin(PN

1 (λ−1σ)) is the solution of a certain lin-
ear differential equation involving only the known data PN . This analysis reduces the necessary
bound to a finite sum.

Lemma 43. Suppose that gN : C→ C is an N-th order polynomial denoted by

gN(σ) =

N∑
n=0

βnσ
n.

We write

c(σ) = cos
(
gN(σ)

)
=

∞∑
n=0

cnσ
n,

and

s(σ) = sin
(
gN(σ)

)
=

∞∑
n=0

snσ
n,

to denote the power series of the compositions with sine and cosine. Let

sN(σ) =

N∑
n=0

snσ
n,

and

cN(σ) =

N∑
n=0

cnσ
n,

be the Taylor polynomials to N-th order, where recursion relations for the coefficients sn and cn

are worked out via power matching in Appendix F. Let

K̂ =

N−1∑
n=0

(n + 1)|βn+1|,

and

eN = max

 2N∑
n=N+1

∣∣∣∣∣∣∣
n−1∑
k=0

k + 1
n

sn−k−1βk+1

∣∣∣∣∣∣∣ ,
2N∑

n=N+1

∣∣∣∣∣∣∣
n−1∑
k=0

k + 1
n

cn−k−1βk+1

∣∣∣∣∣∣∣
 .
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Figure A.6: For I ∈ [0, 1] the system is not modified (bottom grey area). In the white regions the system is modified by
the ‘bump’ function to allow for gluing at I = 2 and I = −1. The system on I ∈ [2, 5] is a ‘flipped copy’ of the system on
I ∈ [−1, 2]. For I ∈ [5, 2π − 1] we ‘freeze’ I = −1 = 2π − 1.

Assume that
K̂

N + 2
< 1.

Then the truncation error on the unit disk D satisfies

sup
|σ|≤1
‖ sin(gN(σ)) − sN(σ)‖ ≤

eN

1 − K̂
N+2

, (66)

and similarly
sup
|σ|≤1
‖ cos(gN(σ)) − cN(σ)‖ ≤

eN

1 − K̂
N+2

. (67)

Appendix A. Modification of a system with a normally hyperbolic invariant cilinder to one
with a normally hyperbolic invariant torus

Consider a family of maps fε : R2d × R × T1
→ R2d × R × T1 for which πI f0 (x) = πI x. We

now modify the family to f̃ε : R2d × T2 → R2d × T2 so that

fε (u, s, I, θ) = f̃ε (u, s, I, θ) for I ∈ [0, 1] .

Before writing out the slightly technical formulae we first explain the idea, which is depicted
in Figure A.6. For I ∈ [0, 1] we leave the system as it is. We then employ a ‘bump’ function so
that at the edges of the domain I ∈ [−1, 2], i.e. for I = 2 and I = −1 = 2π − 1, we have f̃ε = f0.
Then for I ∈ [2, 5] we ‘flip’ the system and glue at I = 2. For the remaining I ∈ [5, 2π − 1] we
‘freeze’ the system taking f0 with I = −1 = 2π − 1.

The technical details of how f̃ε is chosen are of secondary importance. The important issue
is that if we prove diffusion in I over the range I ∈ [0, 1] for f̃ε, then this implies diffusion for
fε, as for I ∈ [0, 1] the systems are the same. Since all the assumptions of Theorem 11 are for
ε = 0, the discussion here is of an abstract nature. The assumptions of Theorems 11 need to
be validated for f0 over I ∈ [0, 1], and then we just need to keep in mind that the construction
mentioned here is valid, but it does not need to be performed in practice.
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We now write out the details. Consider a smooth ‘bump’ function10 b : R→ [0, 1] for which

b (I) = 0 for I ∈ R \ (−1, 2)

b (I) = 1 for I ∈ [0, 1]

let g (u, s, I, θ) := (u, s, 4 − I, θ), h (u, s, I, θ) := (u, s,−1, θ) and take

f̃ε (x) =


f0 (x) + b (πI x) ( fε (x) − f0 (x)) for πI x ∈ [−1, 2] ,
f0 (g(x)) + b (4 − πI x) ( fε (g(x)) − f0 (g(x))) for πI x ∈ [2, 5] ,
f0 (h(x)) for πI x ∈ [5, 2π − 1] .

Remark 44. A similar construction works in the case when I is higher dimensional; say I ∈
[0, 1]k. In this case we control one action as mentioned in Remarks 14, 20, but we need to make
sure that the strips for Theorems 17, 18, 19 do not intersect the boundary of {I ∈ [0, 1]k} on any
action coordinate, except the one action which we control. Otherwise the dynamics could escape
{I ∈ [0, 1]k} through the remaining actions, and the results obtained for the artificial ‘glued’
system would not need to be realized by the true system.

Appendix B. Proof of Lemma 29

We will show that the tangent lines to Wu
0 (F) and W s

0 (F) at the intersection point v∗M span
R2. Note that v∗M = FM (Pu (x∗)). Taking w0 = DPu (x∗) ∈ R2 and wk = DF

(
v∗k

)
wk−1 ∈ R2 we

see that
d
dx

FM (Pu (x)) |x=x∗ = wM−1.

If wM−1 was colinear with d
dy Ps (y) |y=y∗ , then there would exist an α , 0 for which d

dy Ps (y∗) =

αwM−1. Taking the vector V = (1,w0, . . . ,wM−1, 1/α) would lead to

DF (p∗) V = 0.

This is a contradiction, since if p∗ is validated by the use of Theorem 9, so the matrix DF (p∗)
must be invertible.

Appendix C. Proof of Lemma 34

Since 0 is a hyperbolic fixed point of F̃, locally at the fixed point the unstable manifold exists,
is smooth, and tangent to the horizontal axis, hence it is contained in C+ (0). Cone condition
together with (54) ensure that the unstable manifold is streched through B to become a graph
above J. Since locally, close to zero, the unstable manifold is tangent to the horizontal axis it is
a graph of a function with the Lipschitz constant smaller than L. This property is preserved as
the manifold is stretched throughout B thanks to the cone condition.

To show (55) note that for z ∈ C+ (0), since |πsz| < L |πuz|, we obtain‖z‖ ≤
√

1 +L2 |πuz|.
Thus, from (54),

‖z‖ <
√

1 +L2 |πuz| <
√

1 +L2λ
∣∣∣πuF̃(z)

∣∣∣ .
10For instance b(x) = exp(−

(
1 − x2

)−1
) for x ∈ [−1, 0], b(x) = 1 for x ∈ [0, 1], b(x) = exp(−

(
1 − (1 − x)2

)−1
) for

x ∈ [1, 2] and zero otherwise.
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Taking z = F̃−n (w (u)) and using (54) we obtain∥∥∥F̃−n (w (u))
∥∥∥ < √

1 +L2λ
∣∣∣πuF̃−n+1(w (u))

∣∣∣ < . . . < √
1 +L2λn |u| ,

as required.

Appendix D. Proof of Lemma 35

Let z ∈ B and v ∈ C+(z) ∩ B. Since v − z ∈ C+(0), from our assumption it follows that

F̃(v) − F̃(z) =

∫ 1

0

d
dt

F̃ (z + t (v − z)) dt (D.1)

=

∫ 1

0
DF̃ (z + t (v − z)) dt (v − z) ∈ [DF (B)] (v − z) ⊂ C+(0),

hence F̃ (C+(z)) ⊂ C+(F̃(z)), as required.

Appendix E. Proof of Lemma 36

Let (u, s) ∈ C+(0) ∩ B. From a mirror argument to (D.1) and since |s| ≤ L |u| ,

|πuF (u, s)| ∈ |πu [DF (B)] (u, s)| ≥ a11 |u| − L |a12| |u| > λ−1 |u| ,

as required.

Appendix F. Formal series calculations

Suppose that

p0 =

(
x0
y0

)
is a hyperbolic fixed point of the Standard map f (defined in Equation (66)), that λ ∈ R is an
eigenvalue of D f (p0), and that ξ ∈ R2 is an associated eigenvector.

Let

P(σ) =

(
X(σ)
Y(σ)

)
=

∞∑
n=0

(
an

bn

)
σn.

and note that (
a0
b0

)
=

(
x0
y0

)
= p0,

and (
a1
b1

)
= ξ.

While the equations

f (P(σ)) = P(λσ) or f (P(λ−1σ)) = P(σ),
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have the same solutions, the form of the second equaiton is better suited to error analysis while
the first is easier to work with from the perspective of formal series calculations.

Observe that while

P(λσ) =

∞∑
n=0

λn
(

an

bn

)
σn,

computationg the power series coefficients of f (P(σ)) is more delicate, due to the appearance of
the composition term sin(X(s)). To work out the power series of the composition let

s(σ) = sin(X(σ)) =

∞∑
n=0

snσ
n,

and

c(σ) = cos(X(σ)) =

∞∑
n=0

cnσ
n,

where we note that sn and cn depend on the an and bn. Indeed, to first order we have that

s0 = sin(X(0)) = sin(a0), and c0 = cos(a0).

Differentiating s(σ) and c(σ) leads to

s′(σ) = cos(X(σ))X′(σ) = c(σ)X′(σ), (F.1)

and
c′(σ) = − sin(X(σ))X′(σ) = −s(σ)X′(σ), (F.2)

and evaluating at σ = 0 gives

s1 = c0a1, and c1 = −s0a1.

To work out the higher order terms, we expand Equations (F.1) and (F.2) as power series and
obtain that

∞∑
n=0

(n + 1)sn+1σ
n =

 ∞∑
n=0

cnσ
n

  ∞∑
n=0

(n + 1)an+1σ
n


=

∞∑
n=0

 n∑
k=0

(k + 1)cn−kak+1

σn,

and
∞∑

n=0

(n + 1)cn+1σ
n = −

 ∞∑
n=0

snσ
n

  ∞∑
n=0

(n + 1)an+1σ
n


= −

∞∑
n=0

 n∑
k=0

(k + 1)sn−kak+1

σn,

Matching like powers (and reindexing) leads to

sn =
1
n

n−1∑
k=0

(k + 1)cn−k−1ak+1 = c0an +
1
n

n−2∑
k=0

(k + 1)cn−k−1ak+1, (F.3)
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and

cn =
−1
n

n−1∑
k=0

(k + 1)sn−k−1ak+1 = −s0an +
−1
n

n−2∑
k=0

(k + 1)sn−k−1ak+1, (F.4)

for n ≥ 2. Note that the sums on the right hand sides depend only on terms of order less than n.
Then

f (P(σ)) = f (X(σ),Y(σ))

=

(
X(σ) + Y(σ) + α sin(X(σ))

Y(σ) + α sin(X(σ))

)
=

∞∑
n=0

(
an + bn + αsn

bn + αsn

)
σn

=

∞∑
n=0

 an + bn + α
(
c0an + 1

n
∑n−2

k=0(k + 1)cn−k−1ak+1

)
bn + α

(
c0an + 1

n
∑n−2

k=0(k + 1)cn−k−1ak+1

) σn

Setting this last sum equal to P(λσ) and matching like powers leads to(
an + bn + αc0an + α

n
∑n−2

k=0(k + 1)cn−k−1ak+1

bn + αc0an + α
n
∑n−2

k=0(k + 1)cn−k−1ak+1

)
= λn

(
an

bn

)
,

or, upon rearranging[
1 + αc0 − λ

n 1
αc0 1 − λn

] (
an

bn

)
=
−α

n

n−2∑
k=0

(k + 1)cn−k−1ak+1

(
1
1

)
, (F.5)

for n ≥ 2. Observe that the right hand side of the equation does not depend on an. Indeed, the
right hand side depends only on c1, . . . , cn−1, and a1, . . . , an−1.

Moreover, noting that[
1 + αc0 − λ

n 1
αc0 1 − λn

]
=

[
1 + α cos(x0) − λn 1

α cos(x0) 1 − λn

]
= D f (p0) − λnId,

and observing that for n ≥ 2, λn is never an eigenvalue of D f (p0) (as |λ| , 1 by hyperbolicity), we
see that Equation (F.5) is always uniquely solvable. Hence the coefficients of P are formally well
defined to all orders. Observe also that once we solve Equation (F.5) for an and bn we compute
sn, and cn using Equations (F.3) and (F.4), as this information is needed to solve the homological
equations at order n + 1.

Appendix G. Explicit constants for parameterization of the standard map

The next lemmas provide constants C1,C2,C3 when f is the standard map defined in Equa-
tion (66).

Lemma 45 (Explicit constants for the Standard Map). Consider f : C2 → C2 as given in
Equation (66). Recall that λ is an unstable eigenvalue and that µ = λ−1. Let R and r∗ be
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constants satisfying 0 < r∗ < R. If we choose

C1 =
|α| eR (er∗ + 1)

2
,

C2 = |α| eR (er∗ + 1) ,

C3 = 2 + |α| eR,

then (58–60) are satisfied.

Proof. To prove the lemma, start by expanding f (z1 + w1, z2 + w2) to find that

R(z1,z2)(w1,w2) = α [sin(z1)(cos(w1) − 1) + cos(z2)(sin(w1) − w1)]
[

1
1

]
,

is the first order Taylor remainder for the standard map as a function of the base point (z1, z2).
Recalling that z1, z2,w1,w2 ∈ C, the bounds C1 and C2 follow immediately from the identities
sin(z) = (ez − e−z)/2i and cos(z) = (ez + e−z)/2. Indeed we have that

| cos(z)| ≤
e|z| + 1

2
≤ e|z|,

| sin(z)| ≤
e|z| + 1

2
≤ e|z|,

| cos(z) − 1| ≤
|z|2

4
(e|z| + 1),

and

| sin(z) − z| ≤
|z|3

12
(e|z| + 1).

The form of C1 follows directly.
Differentiating with respect to w = (w1,w2) gives that

DRz1,z2 (w1,w2) = α(− sin(z1) sin(w1) + cos(z1)(cos(w1) − 1))
(

1 0
1 0

)
,

from which follows the form of C2.
Finally, for the standard map we have that

D f (z1, z2) =

[
1 + α cos(z1) 1
α cos(z1) 1

]
,

and the bound on C3 follows from the formula for the matrix norm.
Observing that

f −1(z1 + w1, z2 + w2) = f −1(z1, z2) + D f −1(z1, z2)
[

w1
w2

]
+ R̃(z1,z2)(w1,w2),

with

R̃(z1,z2)(w1,w2) =(
0

−α sin(z1 − z2) (cos(w1 − w2) − 1) − α cos(z1 − z2) (sin(w1 − w2) − (w1 − w2))

)
,
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and that

D f −1(z1, z2) =

(
1 −1

−α cos(z1 − z2) 1 + α cos(z1 − z2)

)
,

gives the following bounds.

Lemma 46 (Explicit constants for the inverse Standard Map). Let f −1 : C2 → C2 denote the
inverse of the standard map. Choosing

C1 =
|α|e2M̃(e2r∗ + 1)

2
,

C2 = |α|e2M̃(e2r∗ + 1),

C3 = max
(
2, 1 + 2|α|eM̃

)
,

gives that

sup
‖z−z0‖≤R

‖R̃z(w)‖ ≤ C1‖w‖2, for ‖w‖ ≤ r∗,

sup
‖z−z0‖≤R

‖DR̃z(w)‖ ≤ C2‖w‖, for ‖w‖ ≤ r∗,

and
sup

‖z−z0‖≤R
‖D f −1(z)‖ ≤ C3.

Appendix H. Proof of Theorem 37

The idea behind the proof is to write P(σ) = PN(σ) + H(σ) where H is analytic on D, and to
rewrite (57) as a fixed point problem for H.

Since the coefficients of PN are exactly the Taylor coefficients of P, we have that

H(0) =
d

dσ
H(0) = . . . =

dN

dσN H(0) = 0.

That is, the truncation error function H is zero to order N at σ = 0. We refer to H as an analytic
N-tail, and let

X =
{
H : D→ C2 : H is analytic, H(0) = . . . = HN(0) = 0, ‖H‖0 < ∞

}
, (H.1)

denote the Banach space of all bounded analytic N-tails endowed with the C0 norm. For a linear
operatorM : X → X we write

‖M‖B(X) = sup
‖H‖0=1

‖M(H)‖0,

to denote the operator norm. The collection of all bounded linear operators (bounded in the
‖ · ‖B(D)) is denoted B(D), and is a Banach algebra.

Using the first order Taylor expansion we rewrite the invariance equation (57) as

PN(σ) + H(σ) = f (PN(µσ) + H(µσ))

= f (PN(µσ)) + D f (PN(µσ))H(µσ) + RPN (µσ)(H(µσ)).
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Define
EN(σ) = f (PN(µσ)) − PN(σ),

and note that EN is an analytic N-tail. Moreover, EN does not depend on H. Rearranging leads
to the fixed point problem

H(σ) = EN(σ) + D f (PN(µσ))H(µσ) + RPN (µσ)(H(µσ)), (H.2)

for the truncation error. Observe that if H ∈ X is a solution of Equation (H.2) with ‖H‖0 ≤ r then
P = PN + H solves Equation (57) and has∥∥∥P − PN

∥∥∥
0 = ‖H‖0 ≤ r.

Since H ∈ X and PN is entire, P is analytic on D.
Writing PN(µσ) = z, we see that the condition given in Equation (61) gives

‖z − z0‖ = ‖PN(µσ) − p0‖ ≤

N∑
n=1

µn‖pn‖ ≤ R,

so that for all H ∈ X with ‖H‖ ≤ r∗ the estimates of Equations (58), (59), and (60) give us

‖RPN (µσ)(H)‖0 ≤ C1‖H‖20,

and
‖DRPN (µσ)(H)‖B(X) ≤ C2‖H‖0.

Define the linear operator µ : X → X by

µ(H)(σ) = H(µσ).

The main estimate is that
‖µ‖B(X) ≤ |µ|

N+1.

To see this note that for any H ∈ X we have that

sup
σ∈D
‖H(µσ)‖ ≤ |µ|N+1 sup

σ∈D
‖H(σ)‖, (H.3)

by the maximum modulus principle.
Now define the fixed point operator Ψ : X → X by

Ψ[H](σ) = EN(σ) + D f (PN(µσ))H(µσ) + RPN (µσ)(H(µσ)).

Let
Br = {H ∈ D : ‖H‖0 ≤ r} .

We will show that Ψ has a unique fixed point in Br ⊂ X using the contraction mapping theorem.
Observe first that Ψ is Fréchet differentiable with

DΨ[H1]H2 = D f (PN(µσ))H2(µσ) + DRPN (µσ)(H1(µσ))H2(µσ),

for all H1,H2 ∈ X. From the inequality hypothesized in Equation (64) we obtain that

C2|µ|
2(N+1)r2 + C3|µ|

N+1r + εN < r, (H.4)
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by adding r to both sides of Equation (64). Dividing the inequality in Equation (H.4) by r > 0
leads to

C2|µ|
2(N+1)r + C3|µ|

N+1 +
εN

r
< 1,

and since each term in the sum is positive we have that

C2|µ|
2(N+1)r2 + C3|µ|

N+1r < 1. (H.5)

Now for H ∈ Br we have that

‖DΨ[H]‖B(X) ≤ ‖D f (PN(µσ))µ + DRPN (µσ)(H(µσ))µ‖B(X)

≤ C3‖µ‖B(X) + C2|µ|
N+1‖H‖0‖µ‖B(X)

≤ C3|µ|
N+1 + C2|µ|

2(N+1)r

< 1,

by the inequality given in Equation (H.5). It follows from the Mean Value Inequality that Ψ is a
contraction on Br.

Finally, to verify that Ψ maps Br into itself choose H ∈ Br and note that

‖Ψ[H]‖0 ≤ ‖Ψ[H] − Ψ[0]‖0 + ‖Ψ[0]‖0
≤ sup
‖V‖0≤r

‖DΨ[V]‖‖H‖0 + ‖EN‖0

≤
(
C3|µ|

N+1 + C2|µ|
2(N+1)r

)
r + εN

≤ C2|µ|
2(N+1)r2 + C3|µ|

N+1r + εN

≤ r,

again by the mean value inequality and the bound given in Equation (H.5). Then Ψ is a contrac-
tion mapping from Br into itself, and the proof is complete.

Appendix I. Proof of Lemma 43

Define the function Q : D→ C by

Q(σ) =
d

dσ
gN(σ) =

N−1∑
n=0

(n + 1)βn+1σ
n.

The main observation is that s(σ), c(σ) solve the system of differential equations

s′ = cQ

c′ = −sQ

subject to the initial conditions

s(0) = s0 = sin(gN(0)) = sin(β0), and c(0) = c0 = cos(gN(0)) = cos(β0).
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Integrating leads to the system of equations

s(σ) = s0 +

∫ σ

0
c(z)Q(z) dz,

c(σ) = c0 −

∫ σ

0
s(z)Q(z) dz. (I.1)

We now write s = sN + s∞ and c = cN + c∞ with (s∞, c∞) ∈ X (the space of analytic N-tails – see
Equation (H.1)).Then

sN(σ) + s∞(σ) = s0 +

∫ σ

0
cN(z)Q(z) dz +

∫ σ

0
c∞(z)Q(z) dz,

cN(σ) + c∞(σ) = c0 −

∫ σ

0
sN(z)Q(z) dz −

∫ σ

0
s∞(z)Q(z) dz,

or

s∞(σ) −
∫ σ

0
c∞(z)Q(z) dz = −sN(z) + s0 +

∫ σ

0
cN(z)Q(z) dz,

c∞(σ) +

∫ σ

0
s∞(z)Q(z) dz, = −cN(z) + c0 −

∫ σ

0
sN(z)Q(z) dz, (I.2)

Since cN , sN solve the system of Equations (I.1) exactly to N-th order we have that

sN(σ) = s0 +

[∫ σ

0
cN(z)Q(z) dz

]N

,

cN(σ) = c0 −

[∫ σ

0
s(z)Q(z) dz

]N

,

so that Equation (I.2)becomes

s∞(σ) −
∫ σ

0
c∞(z)Q(z) dz = −s0 −

[∫ σ

0
cN(z)Q(z) dz

]N

+ s0 +

∫ σ

0
cN(z)Q(z) dz,

c∞(σ) +

∫ σ

0
s∞(z)Q(z) dz, = −c0 +

[∫ σ

0
s(z)Q(z) dz

]N

+ c0 −

∫ σ

0
sN(z)Q(z) dz,

which, after cancelation is

s∞(σ) −
∫ σ

0
c∞(z)Q(z) dz =

[∫ σ

0
cN(z)Q(z) dz

]∞
,

c∞(σ) +

∫ σ

0
s∞(z)Q(z) dz, = −

[∫ σ

0
sN(z)Q(z) dz

]∞
, (I.3)

a linear system of equations for s∞, c∞ ∈ X, amenable to a straight forward Neumann series
analysis.

To this end define

H(σ) =

(
s∞(σ)
c∞(σ)

)
, EN(σ) =


[∫ σ

0 cN(z)Q(z) dz
]∞

−
[∫ σ

0 [sN(z)Q(z) dz
]∞  .
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Note that sin(gN (σ)) − sN (σ) = s∞ (σ) and cos(gN (σ)) − cN (σ) = c∞ (σ), so obtaining bounds
on H(σ) will lead to (67–68). Observe that,

cN(z)Q(z) =

2N−1∑
n=0

 n∑
k=0

(k + 1)cn−kβk+1

 zn

as cN and Q are N-th and N − 1-th order polynomials respectively. Then for any σ ∈ D we have
that ∫ σ

0
cN(z)Q(z) dz =

∫ σ

0

2N−1∑
n=0

n∑
k=0

(k + 1)cn−kβk+1zn

 dz

=

2N−1∑
n=0

n∑
k=0

(k + 1)cn−kβk+1

(∫ σ

0
zn dz

)

=

2N−1∑
n=0

n∑
k=0

(k + 1)cn−kβk+1
1

n + 1
σn+1

=

2N∑
n=1

n−1∑
k=0

k + 1
n

cn−k−1βk+1

σn.

Then [∫ σ

0
cN(z)Q(z) dz

]∞
=

2N∑
n=N+1

n−1∑
k=0

k + 1
n

cn−k−1βk+1

σn.

A similar calculation shows that[∫ σ

0
sN(z)Q(z) dz

]∞
=

2N∑
n=N+1

n−1∑
k=0

k + 1
n

sn−k−1βk+1

σn.

Combining these with the maximum modulus principle and the triangle inequality gives

‖EN‖0 ≤ eN ,

where eN is as defined in the hypothesis of the Lemma. We seek a solution H ∈ X of (I.3)
Define the linear operatorM : X → X by

M(H) (σ) =

 − ∫ σ

0 c∞(z)Q(z) dz∫ σ

0 s∞(z)Q(z) dz

 .
The linear equation for H is now

(Id +M) H = EN .

We will show that

‖M‖B(X) ≤
K̂

N + 2
< 1.

To see this note that for any analytic N-tail H with ‖H‖0 < ∞ there exists an analytic function
Ĥ : D→ C2 so that

H(σ) = Ĥ(σ)σN+1,
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and
‖H‖0 = ‖Ĥ‖0.

Here equality of the C0 norms is a consequence of the maximum modulus principle and the
observation that |σ|N+1 = 1 on the boundary of the disk.

Then for any σ ∈ D we have that∣∣∣∣∣∫ σ

0
H(z)Q(z) dz

∣∣∣∣∣ =

∣∣∣∣∣∫ σ

0
zN+1Ĥ(z)Q(z) dz

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
(tσ)N+1Ĥ(tσ)Q(tσ)σ dt

∣∣∣∣∣∣
≤

∫ 1

0
|σ|N+2|Ĥ(tσ)||Q(tσ)|tN+1 dt

≤ ‖Ĥ‖0‖Q‖0|σ|N+2
∫ 1

0
tN+1 dt

≤ ‖H‖0K̂
tN+2

N + 2

∣∣∣∣∣∣1
0

≤
K̂

N + 2
‖H‖0,

as |σ| ≤ 1. Taking the sup over all H with norm one yields the result.
It now follows from the assumption that K̂/(N +2) < 1 and the Neumann theorem that Id+M

is invertible with
‖(Id +M)−1‖B(X) ≤

1

1 − K̂
N+2

.

Then
H = (Id +M)−1EN ,

and
‖H‖0 ≤

eN

1 − K̂
N+2

,

as required.
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